MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftrel Structured version   Unicode version

Theorem fliftrel 6185
Description:  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftrel  |-  ( ph  ->  F  C_  ( R  X.  S ) )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftrel
StepHypRef Expression
1 flift.1 . 2  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
2 flift.2 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
3 flift.3 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
4 opelxpi 5023 . . . . 5  |-  ( ( A  e.  R  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( R  X.  S
) )
52, 3, 4syl2anc 661 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  <. A ,  B >.  e.  ( R  X.  S ) )
6 eqid 2460 . . . 4  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( x  e.  X  |->  <. A ,  B >. )
75, 6fmptd 6036 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. ) : X --> ( R  X.  S ) )
8 frn 5728 . . 3  |-  ( ( x  e.  X  |->  <. A ,  B >. ) : X --> ( R  X.  S )  ->  ran  ( x  e.  X  |-> 
<. A ,  B >. ) 
C_  ( R  X.  S ) )
97, 8syl 16 . 2  |-  ( ph  ->  ran  ( x  e.  X  |->  <. A ,  B >. )  C_  ( R  X.  S ) )
101, 9syl5eqss 3541 1  |-  ( ph  ->  F  C_  ( R  X.  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    C_ wss 3469   <.cop 4026    |-> cmpt 4498    X. cxp 4990   ran crn 4993   -->wf 5575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-fv 5587
This theorem is referenced by:  fliftcnv  6188  fliftfun  6189  fliftf  6192  qliftrel  7383  fmucndlem  20522  pi1xfrcnv  21285
  Copyright terms: Public domain W3C validator