MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfval Structured version   Unicode version

Theorem flfval 19705
Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flfval  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )

Proof of Theorem flfval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 toponmax 18675 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2 filtop 19570 . . . . 5  |-  ( L  e.  ( Fil `  Y
)  ->  Y  e.  L )
3 elmapg 7340 . . . . 5  |-  ( ( X  e.  J  /\  Y  e.  L )  ->  ( F  e.  ( X  ^m  Y )  <-> 
F : Y --> X ) )
41, 2, 3syl2an 477 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( F  e.  ( X  ^m  Y )  <->  F : Y
--> X ) )
54biimpar 485 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  F : Y --> X )  ->  F  e.  ( X  ^m  Y ) )
6 flffval 19704 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLimf  L )  =  ( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) ) )
76fveq1d 5804 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  (
( J  fLimf  L ) `
 F )  =  ( ( f  e.  ( X  ^m  Y
)  |->  ( J  fLim  ( ( X  FilMap  f ) `
 L ) ) ) `  F ) )
8 oveq2 6211 . . . . . . 7  |-  ( f  =  F  ->  ( X  FilMap  f )  =  ( X  FilMap  F ) )
98fveq1d 5804 . . . . . 6  |-  ( f  =  F  ->  (
( X  FilMap  f ) `
 L )  =  ( ( X  FilMap  F ) `  L ) )
109oveq2d 6219 . . . . 5  |-  ( f  =  F  ->  ( J  fLim  ( ( X 
FilMap  f ) `  L
) )  =  ( J  fLim  ( ( X  FilMap  F ) `  L ) ) )
11 eqid 2454 . . . . 5  |-  ( f  e.  ( X  ^m  Y )  |->  ( J 
fLim  ( ( X 
FilMap  f ) `  L
) ) )  =  ( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) )
12 ovex 6228 . . . . 5  |-  ( J 
fLim  ( ( X 
FilMap  F ) `  L
) )  e.  _V
1310, 11, 12fvmpt 5886 . . . 4  |-  ( F  e.  ( X  ^m  Y )  ->  (
( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) ) `  F )  =  ( J  fLim  ( ( X  FilMap  F ) `
 L ) ) )
147, 13sylan9eq 2515 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  F  e.  ( X  ^m  Y
) )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
155, 14syldan 470 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  F : Y --> X )  -> 
( ( J  fLimf  L ) `  F )  =  ( J  fLim  ( ( X  FilMap  F ) `
 L ) ) )
16153impa 1183 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    |-> cmpt 4461   -->wf 5525   ` cfv 5529  (class class class)co 6203    ^m cmap 7327  TopOnctopon 18641   Filcfil 19560    FilMap cfm 19648    fLim cflim 19649    fLimf cflf 19650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-map 7329  df-fbas 17949  df-top 18645  df-topon 18648  df-fil 19561  df-flf 19655
This theorem is referenced by:  flfnei  19706  isflf  19708  hausflf  19712  flfcnp  19719  flfssfcf  19753  uffcfflf  19754  cnpfcf  19756  cnextcn  19781  tsmscls  19850  cnextucn  20020  cmetcaulem  20941  fmcncfil  26529
  Copyright terms: Public domain W3C validator