MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfval Structured version   Unicode version

Theorem flfval 19405
Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flfval  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )

Proof of Theorem flfval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 toponmax 18375 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2 filtop 19270 . . . . 5  |-  ( L  e.  ( Fil `  Y
)  ->  Y  e.  L )
3 elmapg 7215 . . . . 5  |-  ( ( X  e.  J  /\  Y  e.  L )  ->  ( F  e.  ( X  ^m  Y )  <-> 
F : Y --> X ) )
41, 2, 3syl2an 474 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( F  e.  ( X  ^m  Y )  <->  F : Y
--> X ) )
54biimpar 482 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  F : Y --> X )  ->  F  e.  ( X  ^m  Y ) )
6 flffval 19404 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLimf  L )  =  ( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) ) )
76fveq1d 5681 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  (
( J  fLimf  L ) `
 F )  =  ( ( f  e.  ( X  ^m  Y
)  |->  ( J  fLim  ( ( X  FilMap  f ) `
 L ) ) ) `  F ) )
8 oveq2 6088 . . . . . . 7  |-  ( f  =  F  ->  ( X  FilMap  f )  =  ( X  FilMap  F ) )
98fveq1d 5681 . . . . . 6  |-  ( f  =  F  ->  (
( X  FilMap  f ) `
 L )  =  ( ( X  FilMap  F ) `  L ) )
109oveq2d 6096 . . . . 5  |-  ( f  =  F  ->  ( J  fLim  ( ( X 
FilMap  f ) `  L
) )  =  ( J  fLim  ( ( X  FilMap  F ) `  L ) ) )
11 eqid 2433 . . . . 5  |-  ( f  e.  ( X  ^m  Y )  |->  ( J 
fLim  ( ( X 
FilMap  f ) `  L
) ) )  =  ( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) )
12 ovex 6105 . . . . 5  |-  ( J 
fLim  ( ( X 
FilMap  F ) `  L
) )  e.  _V
1310, 11, 12fvmpt 5762 . . . 4  |-  ( F  e.  ( X  ^m  Y )  ->  (
( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) ) `  F )  =  ( J  fLim  ( ( X  FilMap  F ) `
 L ) ) )
147, 13sylan9eq 2485 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  F  e.  ( X  ^m  Y
) )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
155, 14syldan 467 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  /\  F : Y --> X )  -> 
( ( J  fLimf  L ) `  F )  =  ( J  fLim  ( ( X  FilMap  F ) `
 L ) ) )
16153impa 1175 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    e. cmpt 4338   -->wf 5402   ` cfv 5406  (class class class)co 6080    ^m cmap 7202  TopOnctopon 18341   Filcfil 19260    FilMap cfm 19348    fLim cflim 19349    fLimf cflf 19350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-map 7204  df-fbas 17658  df-top 18345  df-topon 18348  df-fil 19261  df-flf 19355
This theorem is referenced by:  flfnei  19406  isflf  19408  hausflf  19412  flfcnp  19419  flfssfcf  19453  uffcfflf  19454  cnpfcf  19456  cnextcn  19481  tsmscls  19550  cnextucn  19720  cmetcaulem  20641  fmcncfil  26215
  Copyright terms: Public domain W3C validator