MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flftg Structured version   Unicode version

Theorem flftg 20942
Description: Limit points of a function can be defined using topological bases. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
flftg.l  |-  J  =  ( topGen `  B )
Assertion
Ref Expression
flftg  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) ) )
Distinct variable groups:    o, s, A    B, o    o, F, s    J, s    o, L, s    X, s    Y, s
Allowed substitution hints:    B( s)    J( o)    X( o)    Y( o)

Proof of Theorem flftg
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 isflf 20939 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. u  e.  J  ( A  e.  u  ->  E. s  e.  L  ( F " s )  C_  u
) ) ) )
2 flftg.l . . . . 5  |-  J  =  ( topGen `  B )
32raleqi 3036 . . . 4  |-  ( A. u  e.  J  ( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u )  <->  A. u  e.  ( topGen `  B )
( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u ) )
4 simpl1 1008 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
5 topontop 19872 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
64, 5syl 17 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  J  e.  Top )
72, 6syl5eqelr 2522 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( topGen `
 B )  e. 
Top )
8 tgclb 19917 . . . . . . 7  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
97, 8sylibr 215 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  B  e. 
TopBases )
10 bastg 19912 . . . . . 6  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
11 eleq2 2502 . . . . . . . . 9  |-  ( u  =  o  ->  ( A  e.  u  <->  A  e.  o ) )
12 sseq2 3492 . . . . . . . . . 10  |-  ( u  =  o  ->  (
( F " s
)  C_  u  <->  ( F " s )  C_  o
) )
1312rexbidv 2946 . . . . . . . . 9  |-  ( u  =  o  ->  ( E. s  e.  L  ( F " s ) 
C_  u  <->  E. s  e.  L  ( F " s )  C_  o
) )
1411, 13imbi12d 321 . . . . . . . 8  |-  ( u  =  o  ->  (
( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u )  <->  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) )
1514cbvralv 3062 . . . . . . 7  |-  ( A. u  e.  ( topGen `  B ) ( A  e.  u  ->  E. s  e.  L  ( F " s )  C_  u
)  <->  A. o  e.  (
topGen `  B ) ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) )
16 ssralv 3531 . . . . . . 7  |-  ( B 
C_  ( topGen `  B
)  ->  ( A. o  e.  ( topGen `  B ) ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
)  ->  A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) )
1715, 16syl5bi 220 . . . . . 6  |-  ( B 
C_  ( topGen `  B
)  ->  ( A. u  e.  ( topGen `  B ) ( A  e.  u  ->  E. s  e.  L  ( F " s )  C_  u
)  ->  A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) )
189, 10, 173syl 18 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. u  e.  ( topGen `
 B ) ( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u )  ->  A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) ) )
19 tg2 19911 . . . . . . . 8  |-  ( ( u  e.  ( topGen `  B )  /\  A  e.  u )  ->  E. o  e.  B  ( A  e.  o  /\  o  C_  u ) )
20 r19.29 2970 . . . . . . . . . 10  |-  ( ( A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o )  /\  E. o  e.  B  ( A  e.  o  /\  o  C_  u ) )  ->  E. o  e.  B  ( ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
)  /\  ( A  e.  o  /\  o  C_  u ) ) )
21 simpl 458 . . . . . . . . . . . . 13  |-  ( ( A  e.  o  /\  o  C_  u )  ->  A  e.  o )
22 simpr 462 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  o  /\  o  C_  u )  -> 
o  C_  u )
23 sstr2 3477 . . . . . . . . . . . . . . 15  |-  ( ( F " s ) 
C_  o  ->  (
o  C_  u  ->  ( F " s ) 
C_  u ) )
2422, 23syl5com 31 . . . . . . . . . . . . . 14  |-  ( ( A  e.  o  /\  o  C_  u )  -> 
( ( F "
s )  C_  o  ->  ( F " s
)  C_  u )
)
2524reximdv 2906 . . . . . . . . . . . . 13  |-  ( ( A  e.  o  /\  o  C_  u )  -> 
( E. s  e.  L  ( F "
s )  C_  o  ->  E. s  e.  L  ( F " s ) 
C_  u ) )
2621, 25embantd 56 . . . . . . . . . . . 12  |-  ( ( A  e.  o  /\  o  C_  u )  -> 
( ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
)  ->  E. s  e.  L  ( F " s )  C_  u
) )
2726impcom 431 . . . . . . . . . . 11  |-  ( ( ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o )  /\  ( A  e.  o  /\  o  C_  u ) )  ->  E. s  e.  L  ( F " s )  C_  u
)
2827rexlimivw 2921 . . . . . . . . . 10  |-  ( E. o  e.  B  ( ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o )  /\  ( A  e.  o  /\  o  C_  u ) )  ->  E. s  e.  L  ( F " s )  C_  u
)
2920, 28syl 17 . . . . . . . . 9  |-  ( ( A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o )  /\  E. o  e.  B  ( A  e.  o  /\  o  C_  u ) )  ->  E. s  e.  L  ( F " s ) 
C_  u )
3029ex 435 . . . . . . . 8  |-  ( A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o )  -> 
( E. o  e.  B  ( A  e.  o  /\  o  C_  u )  ->  E. s  e.  L  ( F " s )  C_  u
) )
3119, 30syl5 33 . . . . . . 7  |-  ( A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o )  -> 
( ( u  e.  ( topGen `  B )  /\  A  e.  u
)  ->  E. s  e.  L  ( F " s )  C_  u
) )
3231expdimp 438 . . . . . 6  |-  ( ( A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o )  /\  u  e.  ( topGen `  B ) )  -> 
( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u ) )
3332ralrimiva 2846 . . . . 5  |-  ( A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o )  ->  A. u  e.  ( topGen `
 B ) ( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u ) )
3418, 33impbid1 206 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. u  e.  ( topGen `
 B ) ( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u )  <->  A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) )
353, 34syl5bb 260 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. u  e.  J  ( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u )  <->  A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) )
3635pm5.32da 645 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. u  e.  J  ( A  e.  u  ->  E. s  e.  L  ( F " s ) 
C_  u ) )  <-> 
( A  e.  X  /\  A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) ) ) )
371, 36bitrd 256 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  B  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783    C_ wss 3442   "cima 4857   -->wf 5597   ` cfv 5601  (class class class)co 6305   topGenctg 15295   Topctop 19848  TopOnctopon 19849   TopBasesctb 19851   Filcfil 20791    fLimf cflf 20881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-map 7482  df-topgen 15301  df-fbas 18902  df-fg 18903  df-top 19852  df-bases 19853  df-topon 19854  df-ntr 19966  df-nei 20045  df-fil 20792  df-fm 20884  df-flim 20885  df-flf 20886
This theorem is referenced by:  txflf  20952
  Copyright terms: Public domain W3C validator