MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfneii Structured version   Unicode version

Theorem flfneii 20944
Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flfneii.x  |-  X  = 
U. J
Assertion
Ref Expression
flfneii  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F )  /\  N  e.  ( ( nei `  J
) `  { A } ) )  ->  E. s  e.  L  ( F " s ) 
C_  N )
Distinct variable groups:    F, s    J, s    L, s    N, s    X, s    Y, s
Allowed substitution hint:    A( s)

Proof of Theorem flfneii
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 flfneii.x . . . . . 6  |-  X  = 
U. J
21toptopon 19885 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3 flfnei 20943 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n
) ) )
42, 3syl3an1b 1300 . . . 4  |-  ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( J  fLimf  L ) `
 F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n
) ) )
54simplbda 628 . . 3  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F ) )  ->  A. n  e.  (
( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n
)
653adant3 1025 . 2  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F )  /\  N  e.  ( ( nei `  J
) `  { A } ) )  ->  A. n  e.  (
( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n
)
7 sseq2 3483 . . . . 5  |-  ( n  =  N  ->  (
( F " s
)  C_  n  <->  ( F " s )  C_  N
) )
87rexbidv 2937 . . . 4  |-  ( n  =  N  ->  ( E. s  e.  L  ( F " s ) 
C_  n  <->  E. s  e.  L  ( F " s )  C_  N
) )
98rspcv 3175 . . 3  |-  ( N  e.  ( ( nei `  J ) `  { A } )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n  ->  E. s  e.  L  ( F " s ) 
C_  N ) )
1093ad2ant3 1028 . 2  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F )  /\  N  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. n  e.  ( ( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n  ->  E. s  e.  L  ( F " s ) 
C_  N ) )
116, 10mpd 15 1  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F )  /\  N  e.  ( ( nei `  J
) `  { A } ) )  ->  E. s  e.  L  ( F " s ) 
C_  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   A.wral 2773   E.wrex 2774    C_ wss 3433   {csn 3993   U.cuni 4213   "cima 4848   -->wf 5588   ` cfv 5592  (class class class)co 6296   Topctop 19854  TopOnctopon 19855   neicnei 20050   Filcfil 20797    fLimf cflf 20887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-map 7473  df-fbas 18908  df-fg 18909  df-top 19858  df-topon 19860  df-nei 20051  df-fil 20798  df-fm 20890  df-flim 20891  df-flf 20892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator