MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffval Structured version   Unicode version

Theorem flffval 19577
Description: Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flffval  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLimf  L )  =  ( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) ) )
Distinct variable groups:    f, J    f, X    f, Y    f, L

Proof of Theorem flffval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 18546 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 fvssunirn 5728 . . . 4  |-  ( Fil `  Y )  C_  U. ran  Fil
32sseli 3367 . . 3  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  U.
ran  Fil )
4 unieq 4114 . . . . . 6  |-  ( x  =  J  ->  U. x  =  U. J )
5 unieq 4114 . . . . . 6  |-  ( y  =  L  ->  U. y  =  U. L )
64, 5oveqan12d 6125 . . . . 5  |-  ( ( x  =  J  /\  y  =  L )  ->  ( U. x  ^m  U. y )  =  ( U. J  ^m  U. L ) )
7 simpl 457 . . . . . 6  |-  ( ( x  =  J  /\  y  =  L )  ->  x  =  J )
84adantr 465 . . . . . . . 8  |-  ( ( x  =  J  /\  y  =  L )  ->  U. x  =  U. J )
98oveq1d 6121 . . . . . . 7  |-  ( ( x  =  J  /\  y  =  L )  ->  ( U. x  FilMap  f )  =  ( U. J  FilMap  f ) )
10 simpr 461 . . . . . . 7  |-  ( ( x  =  J  /\  y  =  L )  ->  y  =  L )
119, 10fveq12d 5712 . . . . . 6  |-  ( ( x  =  J  /\  y  =  L )  ->  ( ( U. x  FilMap  f ) `  y
)  =  ( ( U. J  FilMap  f ) `
 L ) )
127, 11oveq12d 6124 . . . . 5  |-  ( ( x  =  J  /\  y  =  L )  ->  ( x  fLim  (
( U. x  FilMap  f ) `  y ) )  =  ( J 
fLim  ( ( U. J  FilMap  f ) `  L ) ) )
136, 12mpteq12dv 4385 . . . 4  |-  ( ( x  =  J  /\  y  =  L )  ->  ( f  e.  ( U. x  ^m  U. y )  |->  ( x 
fLim  ( ( U. x  FilMap  f ) `  y ) ) )  =  ( f  e.  ( U. J  ^m  U. L )  |->  ( J 
fLim  ( ( U. J  FilMap  f ) `  L ) ) ) )
14 df-flf 19528 . . . 4  |-  fLimf  =  ( x  e.  Top , 
y  e.  U. ran  Fil  |->  ( f  e.  ( U. x  ^m  U. y )  |->  ( x 
fLim  ( ( U. x  FilMap  f ) `  y ) ) ) )
15 ovex 6131 . . . . 5  |-  ( U. J  ^m  U. L )  e.  _V
1615mptex 5963 . . . 4  |-  ( f  e.  ( U. J  ^m  U. L )  |->  ( J  fLim  ( ( U. J  FilMap  f ) `
 L ) ) )  e.  _V
1713, 14, 16ovmpt2a 6236 . . 3  |-  ( ( J  e.  Top  /\  L  e.  U. ran  Fil )  ->  ( J  fLimf  L )  =  ( f  e.  ( U. J  ^m  U. L )  |->  ( J  fLim  ( ( U. J  FilMap  f ) `
 L ) ) ) )
181, 3, 17syl2an 477 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLimf  L )  =  ( f  e.  ( U. J  ^m  U. L )  |->  ( J 
fLim  ( ( U. J  FilMap  f ) `  L ) ) ) )
19 toponuni 18547 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2019eqcomd 2448 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  U. J  =  X )
21 filunibas 19469 . . . 4  |-  ( L  e.  ( Fil `  Y
)  ->  U. L  =  Y )
2220, 21oveqan12d 6125 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( U. J  ^m  U. L
)  =  ( X  ^m  Y ) )
2320adantr 465 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  U. J  =  X )
2423oveq1d 6121 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( U. J  FilMap  f )  =  ( X  FilMap  f ) )
2524fveq1d 5708 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  (
( U. J  FilMap  f ) `  L )  =  ( ( X 
FilMap  f ) `  L
) )
2625oveq2d 6122 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLim  ( ( U. J  FilMap  f ) `  L ) )  =  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) )
2722, 26mpteq12dv 4385 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  (
f  e.  ( U. J  ^m  U. L ) 
|->  ( J  fLim  (
( U. J  FilMap  f ) `  L ) ) )  =  ( f  e.  ( X  ^m  Y )  |->  ( J  fLim  ( ( X  FilMap  f ) `  L ) ) ) )
2818, 27eqtrd 2475 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLimf  L )  =  ( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   U.cuni 4106    e. cmpt 4365   ran crn 4856   ` cfv 5433  (class class class)co 6106    ^m cmap 7229   Topctop 18513  TopOnctopon 18514   Filcfil 19433    FilMap cfm 19521    fLim cflim 19522    fLimf cflf 19523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4418  ax-sep 4428  ax-nul 4436  ax-pow 4485  ax-pr 4546  ax-un 6387
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2735  df-rex 2736  df-reu 2737  df-rab 2739  df-v 2989  df-sbc 3202  df-csb 3304  df-dif 3346  df-un 3348  df-in 3350  df-ss 3357  df-nul 3653  df-if 3807  df-pw 3877  df-sn 3893  df-pr 3895  df-op 3899  df-uni 4107  df-iun 4188  df-br 4308  df-opab 4366  df-mpt 4367  df-id 4651  df-xp 4861  df-rel 4862  df-cnv 4863  df-co 4864  df-dm 4865  df-rn 4866  df-res 4867  df-ima 4868  df-iota 5396  df-fun 5435  df-fn 5436  df-f 5437  df-f1 5438  df-fo 5439  df-f1o 5440  df-fv 5441  df-ov 6109  df-oprab 6110  df-mpt2 6111  df-fbas 17829  df-topon 18521  df-fil 19434  df-flf 19528
This theorem is referenced by:  flfval  19578
  Copyright terms: Public domain W3C validator