MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffval Structured version   Unicode version

Theorem flffval 20225
Description: Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flffval  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLimf  L )  =  ( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) ) )
Distinct variable groups:    f, J    f, X    f, Y    f, L

Proof of Theorem flffval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 19194 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 fvssunirn 5887 . . . 4  |-  ( Fil `  Y )  C_  U. ran  Fil
32sseli 3500 . . 3  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  U.
ran  Fil )
4 unieq 4253 . . . . . 6  |-  ( x  =  J  ->  U. x  =  U. J )
5 unieq 4253 . . . . . 6  |-  ( y  =  L  ->  U. y  =  U. L )
64, 5oveqan12d 6301 . . . . 5  |-  ( ( x  =  J  /\  y  =  L )  ->  ( U. x  ^m  U. y )  =  ( U. J  ^m  U. L ) )
7 simpl 457 . . . . . 6  |-  ( ( x  =  J  /\  y  =  L )  ->  x  =  J )
84adantr 465 . . . . . . . 8  |-  ( ( x  =  J  /\  y  =  L )  ->  U. x  =  U. J )
98oveq1d 6297 . . . . . . 7  |-  ( ( x  =  J  /\  y  =  L )  ->  ( U. x  FilMap  f )  =  ( U. J  FilMap  f ) )
10 simpr 461 . . . . . . 7  |-  ( ( x  =  J  /\  y  =  L )  ->  y  =  L )
119, 10fveq12d 5870 . . . . . 6  |-  ( ( x  =  J  /\  y  =  L )  ->  ( ( U. x  FilMap  f ) `  y
)  =  ( ( U. J  FilMap  f ) `
 L ) )
127, 11oveq12d 6300 . . . . 5  |-  ( ( x  =  J  /\  y  =  L )  ->  ( x  fLim  (
( U. x  FilMap  f ) `  y ) )  =  ( J 
fLim  ( ( U. J  FilMap  f ) `  L ) ) )
136, 12mpteq12dv 4525 . . . 4  |-  ( ( x  =  J  /\  y  =  L )  ->  ( f  e.  ( U. x  ^m  U. y )  |->  ( x 
fLim  ( ( U. x  FilMap  f ) `  y ) ) )  =  ( f  e.  ( U. J  ^m  U. L )  |->  ( J 
fLim  ( ( U. J  FilMap  f ) `  L ) ) ) )
14 df-flf 20176 . . . 4  |-  fLimf  =  ( x  e.  Top , 
y  e.  U. ran  Fil  |->  ( f  e.  ( U. x  ^m  U. y )  |->  ( x 
fLim  ( ( U. x  FilMap  f ) `  y ) ) ) )
15 ovex 6307 . . . . 5  |-  ( U. J  ^m  U. L )  e.  _V
1615mptex 6129 . . . 4  |-  ( f  e.  ( U. J  ^m  U. L )  |->  ( J  fLim  ( ( U. J  FilMap  f ) `
 L ) ) )  e.  _V
1713, 14, 16ovmpt2a 6415 . . 3  |-  ( ( J  e.  Top  /\  L  e.  U. ran  Fil )  ->  ( J  fLimf  L )  =  ( f  e.  ( U. J  ^m  U. L )  |->  ( J  fLim  ( ( U. J  FilMap  f ) `
 L ) ) ) )
181, 3, 17syl2an 477 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLimf  L )  =  ( f  e.  ( U. J  ^m  U. L )  |->  ( J 
fLim  ( ( U. J  FilMap  f ) `  L ) ) ) )
19 toponuni 19195 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2019eqcomd 2475 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  U. J  =  X )
21 filunibas 20117 . . . 4  |-  ( L  e.  ( Fil `  Y
)  ->  U. L  =  Y )
2220, 21oveqan12d 6301 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( U. J  ^m  U. L
)  =  ( X  ^m  Y ) )
2320adantr 465 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  U. J  =  X )
2423oveq1d 6297 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( U. J  FilMap  f )  =  ( X  FilMap  f ) )
2524fveq1d 5866 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  (
( U. J  FilMap  f ) `  L )  =  ( ( X 
FilMap  f ) `  L
) )
2625oveq2d 6298 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLim  ( ( U. J  FilMap  f ) `  L ) )  =  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) )
2722, 26mpteq12dv 4525 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  (
f  e.  ( U. J  ^m  U. L ) 
|->  ( J  fLim  (
( U. J  FilMap  f ) `  L ) ) )  =  ( f  e.  ( X  ^m  Y )  |->  ( J  fLim  ( ( X  FilMap  f ) `  L ) ) ) )
2818, 27eqtrd 2508 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
) )  ->  ( J  fLimf  L )  =  ( f  e.  ( X  ^m  Y ) 
|->  ( J  fLim  (
( X  FilMap  f ) `
 L ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   U.cuni 4245    |-> cmpt 4505   ran crn 5000   ` cfv 5586  (class class class)co 6282    ^m cmap 7417   Topctop 19161  TopOnctopon 19162   Filcfil 20081    FilMap cfm 20169    fLim cflim 20170    fLimf cflf 20171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-fbas 18187  df-topon 19169  df-fil 20082  df-flf 20176
This theorem is referenced by:  flfval  20226
  Copyright terms: Public domain W3C validator