MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffbas Structured version   Unicode version

Theorem flffbas 20228
Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
flffbas.l  |-  L  =  ( Y filGen B )
Assertion
Ref Expression
flffbas  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  B  ( F " s )  C_  o
) ) ) )
Distinct variable groups:    o, s, A    B, o, s    o, F, s    o, J, s   
o, L, s    o, X, s    o, Y, s

Proof of Theorem flffbas
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 flffbas.l . . . 4  |-  L  =  ( Y filGen B )
2 fgcl 20111 . . . 4  |-  ( B  e.  ( fBas `  Y
)  ->  ( Y filGen B )  e.  ( Fil `  Y ) )
31, 2syl5eqel 2559 . . 3  |-  ( B  e.  ( fBas `  Y
)  ->  L  e.  ( Fil `  Y ) )
4 isflf 20226 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. t  e.  L  ( F " t )  C_  o
) ) ) )
53, 4syl3an2 1262 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. t  e.  L  ( F " t )  C_  o
) ) ) )
61eleq2i 2545 . . . . . . . 8  |-  ( t  e.  L  <->  t  e.  ( Y filGen B ) )
7 elfg 20104 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  ( t  e.  ( Y filGen B )  <-> 
( t  C_  Y  /\  E. s  e.  B  s  C_  t ) ) )
873ad2ant2 1018 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
t  e.  ( Y
filGen B )  <->  ( t  C_  Y  /\  E. s  e.  B  s  C_  t ) ) )
9 imass2 5370 . . . . . . . . . . . . . . . . 17  |-  ( s 
C_  t  ->  ( F " s )  C_  ( F " t ) )
10 sstr2 3511 . . . . . . . . . . . . . . . . 17  |-  ( ( F " s ) 
C_  ( F "
t )  ->  (
( F " t
)  C_  o  ->  ( F " s ) 
C_  o ) )
119, 10syl 16 . . . . . . . . . . . . . . . 16  |-  ( s 
C_  t  ->  (
( F " t
)  C_  o  ->  ( F " s ) 
C_  o ) )
1211com12 31 . . . . . . . . . . . . . . 15  |-  ( ( F " t ) 
C_  o  ->  (
s  C_  t  ->  ( F " s ) 
C_  o ) )
1312adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  ( F " t )  C_  o )  ->  (
s  C_  t  ->  ( F " s ) 
C_  o ) )
1413reximdv 2937 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  ( F " t )  C_  o )  ->  ( E. s  e.  B  s  C_  t  ->  E. s  e.  B  ( F " s )  C_  o
) )
1514ex 434 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
( F " t
)  C_  o  ->  ( E. s  e.  B  s  C_  t  ->  E. s  e.  B  ( F " s )  C_  o
) ) )
1615com23 78 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  ( E. s  e.  B  s  C_  t  ->  (
( F " t
)  C_  o  ->  E. s  e.  B  ( F " s ) 
C_  o ) ) )
1716adantld 467 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
( t  C_  Y  /\  E. s  e.  B  s  C_  t )  -> 
( ( F "
t )  C_  o  ->  E. s  e.  B  ( F " s ) 
C_  o ) ) )
188, 17sylbid 215 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
t  e.  ( Y
filGen B )  ->  (
( F " t
)  C_  o  ->  E. s  e.  B  ( F " s ) 
C_  o ) ) )
1918adantr 465 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  (
t  e.  ( Y
filGen B )  ->  (
( F " t
)  C_  o  ->  E. s  e.  B  ( F " s ) 
C_  o ) ) )
206, 19syl5bi 217 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  (
t  e.  L  -> 
( ( F "
t )  C_  o  ->  E. s  e.  B  ( F " s ) 
C_  o ) ) )
2120rexlimdv 2953 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( E. t  e.  L  ( F " t ) 
C_  o  ->  E. s  e.  B  ( F " s )  C_  o
) )
22 ssfg 20105 . . . . . . . . . . . 12  |-  ( B  e.  ( fBas `  Y
)  ->  B  C_  ( Y filGen B ) )
2322, 1syl6sseqr 3551 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  Y
)  ->  B  C_  L
)
2423sselda 3504 . . . . . . . . . 10  |-  ( ( B  e.  ( fBas `  Y )  /\  s  e.  B )  ->  s  e.  L )
25243ad2antl2 1159 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  s  e.  B )  ->  s  e.  L )
2625ad2ant2r 746 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( s  e.  B  /\  ( F " s )  C_  o ) )  -> 
s  e.  L )
27 simprr 756 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( s  e.  B  /\  ( F " s )  C_  o ) )  -> 
( F " s
)  C_  o )
28 imaeq2 5331 . . . . . . . . . 10  |-  ( t  =  s  ->  ( F " t )  =  ( F " s
) )
2928sseq1d 3531 . . . . . . . . 9  |-  ( t  =  s  ->  (
( F " t
)  C_  o  <->  ( F " s )  C_  o
) )
3029rspcev 3214 . . . . . . . 8  |-  ( ( s  e.  L  /\  ( F " s ) 
C_  o )  ->  E. t  e.  L  ( F " t ) 
C_  o )
3126, 27, 30syl2anc 661 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( s  e.  B  /\  ( F " s )  C_  o ) )  ->  E. t  e.  L  ( F " t ) 
C_  o )
3231rexlimdvaa 2956 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( E. s  e.  B  ( F " s ) 
C_  o  ->  E. t  e.  L  ( F " t )  C_  o
) )
3321, 32impbid 191 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( E. t  e.  L  ( F " t ) 
C_  o  <->  E. s  e.  B  ( F " s )  C_  o
) )
3433imbi2d 316 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  (
( A  e.  o  ->  E. t  e.  L  ( F " t ) 
C_  o )  <->  ( A  e.  o  ->  E. s  e.  B  ( F " s )  C_  o
) ) )
3534ralbidv 2903 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  E. t  e.  L  ( F " t ) 
C_  o )  <->  A. o  e.  J  ( A  e.  o  ->  E. s  e.  B  ( F " s )  C_  o
) ) )
3635pm5.32da 641 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. t  e.  L  ( F " t ) 
C_  o ) )  <-> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  B  ( F " s ) 
C_  o ) ) ) )
375, 36bitrd 253 1  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  B  ( F " s )  C_  o
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   "cima 5002   -->wf 5582   ` cfv 5586  (class class class)co 6282   fBascfbas 18174   filGencfg 18175  TopOnctopon 19159   Filcfil 20078    fLimf cflf 20168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-map 7419  df-fbas 18184  df-fg 18185  df-top 19163  df-topon 19166  df-ntr 19284  df-nei 19362  df-fil 20079  df-fm 20171  df-flim 20172  df-flf 20173
This theorem is referenced by:  lmflf  20238  eltsms  20363
  Copyright terms: Public domain W3C validator