MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcnp Structured version   Unicode version

Theorem flfcnp 20795
Description: A continuous function preserves filter limits. (Contributed by Mario Carneiro, 18-Sep-2015.)
Assertion
Ref Expression
flfcnp  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  L ) `  ( G  o.  F ) ) )

Proof of Theorem flfcnp
StepHypRef Expression
1 simprl 756 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  A  e.  ( ( J  fLimf  L ) `  F ) )
2 flfval 20781 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
32adantr 463 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
41, 3eleqtrd 2492 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  A  e.  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
5 simprr 758 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  G  e.  ( ( J  CnP  K ) `  A ) )
6 cnpflfi 20790 . . 3  |-  ( ( A  e.  ( J 
fLim  ( ( X 
FilMap  F ) `  L
) )  /\  G  e.  ( ( J  CnP  K ) `  A ) )  ->  ( G `  A )  e.  ( ( K  fLimf  ( ( X  FilMap  F ) `  L ) ) `  G ) )
74, 5, 6syl2anc 659 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G ) )
8 cnptop2 20035 . . . . . . . 8  |-  ( G  e.  ( ( J  CnP  K ) `  A )  ->  K  e.  Top )
98ad2antll 727 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  K  e.  Top )
10 eqid 2402 . . . . . . . 8  |-  U. K  =  U. K
1110toptopon 19724 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
129, 11sylib 196 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  K  e.  (TopOn `  U. K ) )
13 toponmax 19719 . . . . . 6  |-  ( K  e.  (TopOn `  U. K )  ->  U. K  e.  K )
1412, 13syl 17 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  U. K  e.  K )
15 simpl1 1000 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  J  e.  (TopOn `  X )
)
16 toponmax 19719 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1715, 16syl 17 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  X  e.  J )
18 simpl2 1001 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  L  e.  ( Fil `  Y
) )
19 filfbas 20639 . . . . . 6  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
2018, 19syl 17 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  L  e.  ( fBas `  Y
) )
21 cnpf2 20042 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  G  e.  ( ( J  CnP  K
) `  A )
)  ->  G : X
--> U. K )
2215, 12, 5, 21syl3anc 1230 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  G : X --> U. K )
23 simpl3 1002 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  F : Y --> X )
24 fmco 20752 . . . . 5  |-  ( ( ( U. K  e.  K  /\  X  e.  J  /\  L  e.  ( fBas `  Y
) )  /\  ( G : X --> U. K  /\  F : Y --> X ) )  ->  ( ( U. K  FilMap  ( G  o.  F ) ) `
 L )  =  ( ( U. K  FilMap  G ) `  (
( X  FilMap  F ) `
 L ) ) )
2514, 17, 20, 22, 23, 24syl32anc 1238 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( U. K  FilMap  ( G  o.  F ) ) `  L )  =  ( ( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) )
2625oveq2d 6293 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( K  fLim  ( ( U. K  FilMap  ( G  o.  F ) ) `  L ) )  =  ( K  fLim  (
( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) ) )
27 fco 5723 . . . . 5  |-  ( ( G : X --> U. K  /\  F : Y --> X )  ->  ( G  o.  F ) : Y --> U. K )
2822, 23, 27syl2anc 659 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G  o.  F ) : Y --> U. K )
29 flfval 20781 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  L  e.  ( Fil `  Y
)  /\  ( G  o.  F ) : Y --> U. K )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( K  fLim  (
( U. K  FilMap  ( G  o.  F ) ) `  L ) ) )
3012, 18, 28, 29syl3anc 1230 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( K  fLim  (
( U. K  FilMap  ( G  o.  F ) ) `  L ) ) )
31 fmfil 20735 . . . . 5  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
3217, 20, 23, 31syl3anc 1230 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
33 flfval 20781 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
)  /\  G : X
--> U. K )  -> 
( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G )  =  ( K  fLim  (
( U. K  FilMap  G ) `  ( ( X  FilMap  F ) `  L ) ) ) )
3412, 32, 22, 33syl3anc 1230 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  ( ( X  FilMap  F ) `  L ) ) `  G )  =  ( K  fLim  ( ( U. K  FilMap  G ) `
 ( ( X 
FilMap  F ) `  L
) ) ) )
3526, 30, 343eqtr4d 2453 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  (
( K  fLimf  L ) `
 ( G  o.  F ) )  =  ( ( K  fLimf  ( ( X  FilMap  F ) `
 L ) ) `
 G ) )
367, 35eleqtrrd 2493 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  ( A  e.  ( ( J  fLimf  L ) `  F )  /\  G  e.  ( ( J  CnP  K ) `  A ) ) )  ->  ( G `  A )  e.  ( ( K  fLimf  L ) `  ( G  o.  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   U.cuni 4190    o. ccom 4826   -->wf 5564   ` cfv 5568  (class class class)co 6277   fBascfbas 18724   Topctop 19684  TopOnctopon 19685    CnP ccnp 20017   Filcfil 20636    FilMap cfm 20724    fLim cflim 20725    fLimf cflf 20726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1st 6783  df-2nd 6784  df-map 7458  df-fbas 18734  df-fg 18735  df-top 19689  df-topon 19692  df-ntr 19811  df-nei 19890  df-cnp 20020  df-fil 20637  df-fm 20729  df-flim 20730  df-flf 20731
This theorem is referenced by:  flfcnp2  20798  tsmsmhm  20938
  Copyright terms: Public domain W3C validator