MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldivp1 Unicode version

Theorem fldivp1 13221
Description: The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.)
Assertion
Ref Expression
fldivp1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( M  + 
1 )  /  N
) )  -  ( |_ `  ( M  /  N ) ) )  =  if ( N 
||  ( M  + 
1 ) ,  1 ,  0 ) )

Proof of Theorem fldivp1
StepHypRef Expression
1 nnz 10259 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  ZZ )
21adantl 453 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
3 nnne0 9988 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  =/=  0 )
43adantl 453 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  =/=  0 )
5 peano2z 10274 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
65adantr 452 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  1 )  e.  ZZ )
7 dvdsval2 12810 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  ( M  +  1 )  e.  ZZ )  -> 
( N  ||  ( M  +  1 )  <-> 
( ( M  + 
1 )  /  N
)  e.  ZZ ) )
82, 4, 6, 7syl3anc 1184 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  ||  ( M  +  1 )  <-> 
( ( M  + 
1 )  /  N
)  e.  ZZ ) )
98biimpa 471 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( M  +  1 )  /  N )  e.  ZZ )
10 flid 11171 . . . . . . 7  |-  ( ( ( M  +  1 )  /  N )  e.  ZZ  ->  ( |_ `  ( ( M  +  1 )  /  N ) )  =  ( ( M  + 
1 )  /  N
) )
119, 10syl 16 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( M  + 
1 )  /  N
) )  =  ( ( M  +  1 )  /  N ) )
12 nnm1nn0 10217 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1312nn0red 10231 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
1412nn0ge0d 10233 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <_  ( N  -  1 ) )
15 nnre 9963 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
16 nngt0 9985 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  N )
17 divge0 9835 . . . . . . . . 9  |-  ( ( ( ( N  - 
1 )  e.  RR  /\  0  <_  ( N  -  1 ) )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
0  <_  ( ( N  -  1 )  /  N ) )
1813, 14, 15, 16, 17syl22anc 1185 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <_  ( ( N  - 
1 )  /  N
) )
1918ad2antlr 708 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  0  <_  ( ( N  -  1 )  /  N ) )
2015ltm1d 9899 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  1 )  <  N )
21 nncn 9964 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
2221mulid1d 9061 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  x.  1 )  =  N )
2320, 22breqtrrd 4198 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  <  ( N  x.  1 ) )
24 1re 9046 . . . . . . . . . . 11  |-  1  e.  RR
2524a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  1  e.  RR )
26 ltdivmul 9838 . . . . . . . . . 10  |-  ( ( ( N  -  1 )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( ( N  -  1 )  /  N )  <  1  <->  ( N  -  1 )  <  ( N  x.  1 ) ) )
2713, 25, 15, 16, 26syl112anc 1188 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( N  - 
1 )  /  N
)  <  1  <->  ( N  -  1 )  < 
( N  x.  1 ) ) )
2823, 27mpbird 224 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  <  1 )
2928ad2antlr 708 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( N  -  1 )  /  N )  <  1 )
30 nndivre 9991 . . . . . . . . . 10  |-  ( ( ( N  -  1 )  e.  RR  /\  N  e.  NN )  ->  ( ( N  - 
1 )  /  N
)  e.  RR )
3113, 30mpancom 651 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  -  1 )  /  N )  e.  RR )
3231ad2antlr 708 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( N  -  1 )  /  N )  e.  RR )
33 flbi2 11179 . . . . . . . 8  |-  ( ( ( ( M  + 
1 )  /  N
)  e.  ZZ  /\  ( ( N  - 
1 )  /  N
)  e.  RR )  ->  ( ( |_
`  ( ( ( M  +  1 )  /  N )  +  ( ( N  - 
1 )  /  N
) ) )  =  ( ( M  + 
1 )  /  N
)  <->  ( 0  <_ 
( ( N  - 
1 )  /  N
)  /\  ( ( N  -  1 )  /  N )  <  1 ) ) )
349, 32, 33syl2anc 643 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( |_ `  ( ( ( M  +  1 )  /  N )  +  ( ( N  - 
1 )  /  N
) ) )  =  ( ( M  + 
1 )  /  N
)  <->  ( 0  <_ 
( ( N  - 
1 )  /  N
)  /\  ( ( N  -  1 )  /  N )  <  1 ) ) )
3519, 29, 34mpbir2and 889 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) )  =  ( ( M  +  1 )  /  N ) )
3611, 35eqtr4d 2439 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( M  + 
1 )  /  N
) )  =  ( |_ `  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) ) )
37 zcn 10243 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  CC )
3837adantr 452 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
39 ax-1cn 9004 . . . . . . . . . . . . 13  |-  1  e.  CC
4039a1i 11 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  1  e.  CC )
4121adantl 453 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
4238, 40, 41ppncand 9407 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  +  ( N  -  1 ) )  =  ( M  +  N ) )
4342oveq1d 6055 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  +  ( N  -  1 ) )  /  N
)  =  ( ( M  +  N )  /  N ) )
446zcnd 10332 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  1 )  e.  CC )
45 subcl 9261 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
4621, 39, 45sylancl 644 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
4746adantl 453 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  -  1 )  e.  CC )
4844, 47, 41, 4divdird 9784 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  +  ( N  -  1 ) )  /  N
)  =  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) )
4943, 48eqtr3d 2438 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  +  N )  /  N
)  =  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) )
5038, 41, 41, 4divdird 9784 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  +  N )  /  N
)  =  ( ( M  /  N )  +  ( N  /  N ) ) )
5149, 50eqtr3d 2438 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) )  =  ( ( M  /  N )  +  ( N  /  N ) ) )
5241, 4dividd 9744 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  /  N
)  =  1 )
5352oveq2d 6056 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  +  ( N  /  N ) )  =  ( ( M  /  N )  +  1 ) )
5451, 53eqtrd 2436 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) )  =  ( ( M  /  N )  +  1 ) )
5554fveq2d 5691 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( ( M  + 
1 )  /  N
)  +  ( ( N  -  1 )  /  N ) ) )  =  ( |_
`  ( ( M  /  N )  +  1 ) ) )
5655adantr 452 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( ( M  +  1 )  /  N )  +  ( ( N  -  1 )  /  N ) ) )  =  ( |_ `  ( ( M  /  N )  +  1 ) ) )
57 zre 10242 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
58 nndivre 9991 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
5957, 58sylan 458 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
60 1z 10267 . . . . . . 7  |-  1  e.  ZZ
61 fladdz 11182 . . . . . . 7  |-  ( ( ( M  /  N
)  e.  RR  /\  1  e.  ZZ )  ->  ( |_ `  (
( M  /  N
)  +  1 ) )  =  ( ( |_ `  ( M  /  N ) )  +  1 ) )
6259, 60, 61sylancl 644 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( M  /  N
)  +  1 ) )  =  ( ( |_ `  ( M  /  N ) )  +  1 ) )
6362adantr 452 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( |_ `  ( ( M  /  N )  +  1 ) )  =  ( ( |_ `  ( M  /  N ) )  +  1 ) )
6436, 56, 633eqtrrd 2441 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( |_ `  ( M  /  N ) )  +  1 )  =  ( |_ `  ( ( M  +  1 )  /  N ) ) )
65 zre 10242 . . . . . . . . . 10  |-  ( ( M  +  1 )  e.  ZZ  ->  ( M  +  1 )  e.  RR )
665, 65syl 16 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  RR )
67 nndivre 9991 . . . . . . . . 9  |-  ( ( ( M  +  1 )  e.  RR  /\  N  e.  NN )  ->  ( ( M  + 
1 )  /  N
)  e.  RR )
6866, 67sylan 458 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  /  N
)  e.  RR )
6968flcld 11162 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( M  +  1 )  /  N ) )  e.  ZZ )
7069zcnd 10332 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  (
( M  +  1 )  /  N ) )  e.  CC )
7159flcld 11162 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
7271zcnd 10332 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  CC )
7370, 72, 40subaddd 9385 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  1  <->  (
( |_ `  ( M  /  N ) )  +  1 )  =  ( |_ `  (
( M  +  1 )  /  N ) ) ) )
7473adantr 452 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( (
( |_ `  (
( M  +  1 )  /  N ) )  -  ( |_
`  ( M  /  N ) ) )  =  1  <->  ( ( |_ `  ( M  /  N ) )  +  1 )  =  ( |_ `  ( ( M  +  1 )  /  N ) ) ) )
7564, 74mpbird 224 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( |_ `  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  1 )
76 iftrue 3705 . . . 4  |-  ( N 
||  ( M  + 
1 )  ->  if ( N  ||  ( M  +  1 ) ,  1 ,  0 )  =  1 )
7776adantl 453 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  if ( N  ||  ( M  + 
1 ) ,  1 ,  0 )  =  1 )
7875, 77eqtr4d 2439 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  N  ||  ( M  +  1 ) )  ->  ( ( |_ `  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  if ( N  ||  ( M  +  1 ) ,  1 ,  0 ) )
79 zmodcl 11221 . . . . . . . . . . 11  |-  ( ( ( M  +  1 )  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  e.  NN0 )
805, 79sylan 458 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  e.  NN0 )
8180nn0red 10231 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  e.  RR )
82 resubcl 9321 . . . . . . . . 9  |-  ( ( ( ( M  + 
1 )  mod  N
)  e.  RR  /\  1  e.  RR )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  RR )
8381, 24, 82sylancl 644 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  RR )
8483adantr 452 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( ( M  + 
1 )  mod  N
)  -  1 )  e.  RR )
85 elnn0 10179 . . . . . . . . . . . . . 14  |-  ( ( ( M  +  1 )  mod  N )  e.  NN0  <->  ( ( ( M  +  1 )  mod  N )  e.  NN  \/  ( ( M  +  1 )  mod  N )  =  0 ) )
8680, 85sylib 189 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  e.  NN  \/  ( ( M  + 
1 )  mod  N
)  =  0 ) )
8786ord 367 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( -.  ( ( M  +  1 )  mod  N )  e.  NN  ->  ( ( M  +  1 )  mod  N )  =  0 ) )
88 id 20 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  NN )
89 dvdsval3 12811 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( M  +  1
)  e.  ZZ )  ->  ( N  ||  ( M  +  1
)  <->  ( ( M  +  1 )  mod 
N )  =  0 ) )
9088, 5, 89syl2anr 465 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  ||  ( M  +  1 )  <-> 
( ( M  + 
1 )  mod  N
)  =  0 ) )
9187, 90sylibrd 226 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( -.  ( ( M  +  1 )  mod  N )  e.  NN  ->  N  ||  ( M  +  1 ) ) )
9291con1d 118 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( -.  N  ||  ( M  +  1
)  ->  ( ( M  +  1 )  mod  N )  e.  NN ) )
9392imp 419 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( M  +  1 )  mod  N )  e.  NN )
94 nnm1nn0 10217 . . . . . . . . 9  |-  ( ( ( M  +  1 )  mod  N )  e.  NN  ->  (
( ( M  + 
1 )  mod  N
)  -  1 )  e.  NN0 )
9593, 94syl 16 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( ( M  + 
1 )  mod  N
)  -  1 )  e.  NN0 )
9695nn0ge0d 10233 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  0  <_  ( ( ( M  +  1 )  mod 
N )  -  1 ) )
9715, 16jca 519 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
9897ad2antlr 708 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  ( N  e.  RR  /\  0  <  N ) )
99 divge0 9835 . . . . . . 7  |-  ( ( ( ( ( ( M  +  1 )  mod  N )  - 
1 )  e.  RR  /\  0  <_  ( (
( M  +  1 )  mod  N )  -  1 ) )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
0  <_  ( (
( ( M  + 
1 )  mod  N
)  -  1 )  /  N ) )
10084, 96, 98, 99syl21anc 1183 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  0  <_  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) )
10115adantl 453 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
10281ltm1d 9899 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  <  ( ( M  +  1 )  mod  N ) )
103 nnrp 10577 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  RR+ )
104 modlt 11213 . . . . . . . . . . 11  |-  ( ( ( M  +  1 )  e.  RR  /\  N  e.  RR+ )  -> 
( ( M  + 
1 )  mod  N
)  <  N )
10566, 103, 104syl2an 464 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  <  N )
10683, 81, 101, 102, 105lttrd 9187 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  <  N )
10741mulid1d 9061 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  1 )  =  N )
108106, 107breqtrrd 4198 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  <  ( N  x.  1 ) )
10924a1i 11 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  1  e.  RR )
11016adantl 453 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
111 ltdivmul 9838 . . . . . . . . 9  |-  ( ( ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  RR  /\  1  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N )  <  1  <->  ( ( ( M  + 
1 )  mod  N
)  -  1 )  <  ( N  x.  1 ) ) )
11283, 109, 101, 110, 111syl112anc 1188 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N )  <  1  <->  ( ( ( M  + 
1 )  mod  N
)  -  1 )  <  ( N  x.  1 ) ) )
113108, 112mpbird 224 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  <  1 )
114113adantr 452 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( ( ( M  +  1 )  mod 
N )  -  1 )  /  N )  <  1 )
115 nndivre 9991 . . . . . . . . 9  |-  ( ( ( ( ( M  +  1 )  mod 
N )  -  1 )  e.  RR  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  RR )
11683, 115sylancom 649 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  RR )
117 flbi2 11179 . . . . . . . 8  |-  ( ( ( |_ `  (
( M  +  1 )  /  N ) )  e.  ZZ  /\  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  RR )  ->  ( ( |_
`  ( ( |_
`  ( ( M  +  1 )  /  N ) )  +  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) ) )  =  ( |_ `  (
( M  +  1 )  /  N ) )  <->  ( 0  <_ 
( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  /\  ( (
( ( M  + 
1 )  mod  N
)  -  1 )  /  N )  <  1 ) ) )
11869, 116, 117syl2anc 643 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( |_ `  ( ( M  + 
1 )  /  N
) )  +  ( ( ( ( M  +  1 )  mod 
N )  -  1 )  /  N ) ) )  =  ( |_ `  ( ( M  +  1 )  /  N ) )  <-> 
( 0  <_  (
( ( ( M  +  1 )  mod 
N )  -  1 )  /  N )  /\  ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N )  <  1
) ) )
119118adantr 452 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( |_ `  (
( |_ `  (
( M  +  1 )  /  N ) )  +  ( ( ( ( M  + 
1 )  mod  N
)  -  1 )  /  N ) ) )  =  ( |_
`  ( ( M  +  1 )  /  N ) )  <->  ( 0  <_  ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N )  /\  (
( ( ( M  +  1 )  mod 
N )  -  1 )  /  N )  <  1 ) ) )
120100, 114, 119mpbir2and 889 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  ( |_ `  ( ( |_
`  ( ( M  +  1 )  /  N ) )  +  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) ) )  =  ( |_ `  (
( M  +  1 )  /  N ) ) )
121 modval 11207 . . . . . . . . . . . . . 14  |-  ( ( ( M  +  1 )  e.  RR  /\  N  e.  RR+ )  -> 
( ( M  + 
1 )  mod  N
)  =  ( ( M  +  1 )  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
12266, 103, 121syl2an 464 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  mod  N
)  =  ( ( M  +  1 )  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
123122oveq1d 6055 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  =  ( ( ( M  +  1 )  -  ( N  x.  ( |_ `  ( ( M  + 
1 )  /  N
) ) ) )  -  1 ) )
12441, 70mulcld 9064 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) )  e.  CC )
12544, 40, 124sub32d 9399 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  - 
1 )  -  ( N  x.  ( |_ `  ( ( M  + 
1 )  /  N
) ) ) )  =  ( ( ( M  +  1 )  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) )  -  1 ) )
126123, 125eqtr4d 2439 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  =  ( ( ( M  +  1 )  -  1 )  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
127 pncan 9267 . . . . . . . . . . . . 13  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
12838, 39, 127sylancl 644 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  + 
1 )  -  1 )  =  M )
129128oveq1d 6055 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  - 
1 )  -  ( N  x.  ( |_ `  ( ( M  + 
1 )  /  N
) ) ) )  =  ( M  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
130126, 129eqtrd 2436 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  +  1 )  mod 
N )  -  1 )  =  ( M  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) ) )
131130oveq1d 6055 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  =  ( ( M  -  ( N  x.  ( |_ `  ( ( M  + 
1 )  /  N
) ) ) )  /  N ) )
13238, 124, 41, 4divsubdird 9785 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  -  ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) ) )  /  N )  =  ( ( M  /  N )  -  ( ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) )  /  N ) ) )
13370, 41, 4divcan3d 9751 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) )  /  N )  =  ( |_ `  ( ( M  + 
1 )  /  N
) ) )
134133oveq2d 6056 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  (
( N  x.  ( |_ `  ( ( M  +  1 )  /  N ) ) )  /  N ) )  =  ( ( M  /  N )  -  ( |_ `  ( ( M  +  1 )  /  N ) ) ) )
135131, 132, 1343eqtrrd 2441 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  ( |_ `  ( ( M  +  1 )  /  N ) ) )  =  ( ( ( ( M  +  1 )  mod  N )  -  1 )  /  N ) )
13659recnd 9070 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
137116recnd 9070 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
)  e.  CC )
138136, 70, 137subaddd 9385 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( M  /  N )  -  ( |_ `  ( ( M  +  1 )  /  N ) ) )  =  ( ( ( ( M  + 
1 )  mod  N
)  -  1 )  /  N )  <->  ( ( |_ `  ( ( M  +  1 )  /  N ) )  +  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) )  =  ( M  /  N ) ) )
139135, 138mpbid 202 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( M  + 
1 )  /  N
) )  +  ( ( ( ( M  +  1 )  mod 
N )  -  1 )  /  N ) )  =  ( M  /  N ) )
140139adantr 452 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( |_ `  (
( M  +  1 )  /  N ) )  +  ( ( ( ( M  + 
1 )  mod  N
)  -  1 )  /  N ) )  =  ( M  /  N ) )
141140fveq2d 5691 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  ( |_ `  ( ( |_
`  ( ( M  +  1 )  /  N ) )  +  ( ( ( ( M  +  1 )  mod  N )  - 
1 )  /  N
) ) )  =  ( |_ `  ( M  /  N ) ) )
142120, 141eqtr3d 2438 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  ( |_ `  ( ( M  +  1 )  /  N ) )  =  ( |_ `  ( M  /  N ) ) )
14370, 72subeq0ad 9377 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( |_
`  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  0  <->  ( |_ `  ( ( M  +  1 )  /  N ) )  =  ( |_ `  ( M  /  N ) ) ) )
144143adantr 452 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( ( |_ `  ( ( M  + 
1 )  /  N
) )  -  ( |_ `  ( M  /  N ) ) )  =  0  <->  ( |_ `  ( ( M  + 
1 )  /  N
) )  =  ( |_ `  ( M  /  N ) ) ) )
145142, 144mpbird 224 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( |_ `  (
( M  +  1 )  /  N ) )  -  ( |_
`  ( M  /  N ) ) )  =  0 )
146 iffalse 3706 . . . 4  |-  ( -.  N  ||  ( M  +  1 )  ->  if ( N  ||  ( M  +  1 ) ,  1 ,  0 )  =  0 )
147146adantl 453 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  if ( N  ||  ( M  +  1 ) ,  1 ,  0 )  =  0 )
148145, 147eqtr4d 2439 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  NN )  /\  -.  N  ||  ( M  +  1
) )  ->  (
( |_ `  (
( M  +  1 )  /  N ) )  -  ( |_
`  ( M  /  N ) ) )  =  if ( N 
||  ( M  + 
1 ) ,  1 ,  0 ) )
14978, 148pm2.61dan 767 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( M  + 
1 )  /  N
) )  -  ( |_ `  ( M  /  N ) ) )  =  if ( N 
||  ( M  + 
1 ) ,  1 ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   ifcif 3699   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   NN0cn0 10177   ZZcz 10238   RR+crp 10568   |_cfl 11156    mod cmo 11205    || cdivides 12807
This theorem is referenced by:  pcfac  13223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fl 11157  df-mod 11206  df-dvds 12808
  Copyright terms: Public domain W3C validator