MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fixufil Structured version   Unicode version

Theorem fixufil 20155
Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009.) (Revised by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 29-Jul-2015.)
Assertion
Ref Expression
fixufil  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { x  e.  ~P X  |  A  e.  x }  e.  ( UFil `  X ) )
Distinct variable groups:    x, A    x, X    x, V

Proof of Theorem fixufil
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 uffix 20154 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X )  ->  ( { { A } }  e.  ( fBas `  X )  /\  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) ) )
21simprd 463 . . 3  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) )
31simpld 459 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { { A } }  e.  ( fBas `  X ) )
4 fgcl 20111 . . . 4  |-  ( { { A } }  e.  ( fBas `  X
)  ->  ( X filGen { { A } } )  e.  ( Fil `  X ) )
53, 4syl 16 . . 3  |-  ( ( X  e.  V  /\  A  e.  X )  ->  ( X filGen { { A } } )  e.  ( Fil `  X
) )
62, 5eqeltrd 2555 . 2  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { x  e.  ~P X  |  A  e.  x }  e.  ( Fil `  X ) )
7 undif2 3903 . . . . . . . . . 10  |-  ( y  u.  ( X  \ 
y ) )  =  ( y  u.  X
)
8 elpwi 4019 . . . . . . . . . . 11  |-  ( y  e.  ~P X  -> 
y  C_  X )
9 ssequn1 3674 . . . . . . . . . . 11  |-  ( y 
C_  X  <->  ( y  u.  X )  =  X )
108, 9sylib 196 . . . . . . . . . 10  |-  ( y  e.  ~P X  -> 
( y  u.  X
)  =  X )
117, 10syl5req 2521 . . . . . . . . 9  |-  ( y  e.  ~P X  ->  X  =  ( y  u.  ( X  \  y
) ) )
1211eleq2d 2537 . . . . . . . 8  |-  ( y  e.  ~P X  -> 
( A  e.  X  <->  A  e.  ( y  u.  ( X  \  y
) ) ) )
1312biimpac 486 . . . . . . 7  |-  ( ( A  e.  X  /\  y  e.  ~P X
)  ->  A  e.  ( y  u.  ( X  \  y ) ) )
14 elun 3645 . . . . . . 7  |-  ( A  e.  ( y  u.  ( X  \  y
) )  <->  ( A  e.  y  \/  A  e.  ( X  \  y
) ) )
1513, 14sylib 196 . . . . . 6  |-  ( ( A  e.  X  /\  y  e.  ~P X
)  ->  ( A  e.  y  \/  A  e.  ( X  \  y
) ) )
1615adantll 713 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  ( A  e.  y  \/  A  e.  ( X  \  y ) ) )
17 ibar 504 . . . . . . 7  |-  ( y  e.  ~P X  -> 
( A  e.  y  <-> 
( y  e.  ~P X  /\  A  e.  y ) ) )
1817adantl 466 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  ( A  e.  y  <->  ( y  e.  ~P X  /\  A  e.  y ) ) )
19 difss 3631 . . . . . . . . 9  |-  ( X 
\  y )  C_  X
20 elpw2g 4610 . . . . . . . . 9  |-  ( X  e.  V  ->  (
( X  \  y
)  e.  ~P X  <->  ( X  \  y ) 
C_  X ) )
2119, 20mpbiri 233 . . . . . . . 8  |-  ( X  e.  V  ->  ( X  \  y )  e. 
~P X )
2221ad2antrr 725 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  ( X  \  y )  e. 
~P X )
2322biantrurd 508 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  ( A  e.  ( X  \  y )  <->  ( ( X  \  y )  e. 
~P X  /\  A  e.  ( X  \  y
) ) ) )
2418, 23orbi12d 709 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  (
( A  e.  y  \/  A  e.  ( X  \  y ) )  <->  ( ( y  e.  ~P X  /\  A  e.  y )  \/  ( ( X  \ 
y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) ) )
2516, 24mpbid 210 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  (
( y  e.  ~P X  /\  A  e.  y )  \/  ( ( X  \  y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) )
2625ralrimiva 2878 . . 3  |-  ( ( X  e.  V  /\  A  e.  X )  ->  A. y  e.  ~P  X ( ( y  e.  ~P X  /\  A  e.  y )  \/  ( ( X  \ 
y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) )
27 eleq2 2540 . . . . . 6  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
2827elrab 3261 . . . . 5  |-  ( y  e.  { x  e. 
~P X  |  A  e.  x }  <->  ( y  e.  ~P X  /\  A  e.  y ) )
29 eleq2 2540 . . . . . 6  |-  ( x  =  ( X  \ 
y )  ->  ( A  e.  x  <->  A  e.  ( X  \  y
) ) )
3029elrab 3261 . . . . 5  |-  ( ( X  \  y )  e.  { x  e. 
~P X  |  A  e.  x }  <->  ( ( X  \  y )  e. 
~P X  /\  A  e.  ( X  \  y
) ) )
3128, 30orbi12i 521 . . . 4  |-  ( ( y  e.  { x  e.  ~P X  |  A  e.  x }  \/  ( X  \  y )  e. 
{ x  e.  ~P X  |  A  e.  x } )  <->  ( (
y  e.  ~P X  /\  A  e.  y
)  \/  ( ( X  \  y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) )
3231ralbii 2895 . . 3  |-  ( A. y  e.  ~P  X
( y  e.  {
x  e.  ~P X  |  A  e.  x }  \/  ( X  \  y )  e.  {
x  e.  ~P X  |  A  e.  x } )  <->  A. y  e.  ~P  X ( ( y  e.  ~P X  /\  A  e.  y
)  \/  ( ( X  \  y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) )
3326, 32sylibr 212 . 2  |-  ( ( X  e.  V  /\  A  e.  X )  ->  A. y  e.  ~P  X ( y  e. 
{ x  e.  ~P X  |  A  e.  x }  \/  ( X  \  y )  e. 
{ x  e.  ~P X  |  A  e.  x } ) )
34 isufil 20136 . 2  |-  ( { x  e.  ~P X  |  A  e.  x }  e.  ( UFil `  X )  <->  ( {
x  e.  ~P X  |  A  e.  x }  e.  ( Fil `  X )  /\  A. y  e.  ~P  X
( y  e.  {
x  e.  ~P X  |  A  e.  x }  \/  ( X  \  y )  e.  {
x  e.  ~P X  |  A  e.  x } ) ) )
356, 33, 34sylanbrc 664 1  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { x  e.  ~P X  |  A  e.  x }  e.  ( UFil `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   {crab 2818    \ cdif 3473    u. cun 3474    C_ wss 3476   ~Pcpw 4010   {csn 4027   ` cfv 5586  (class class class)co 6282   fBascfbas 18174   filGencfg 18175   Filcfil 20078   UFilcufil 20132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-fbas 18184  df-fg 18185  df-fil 20079  df-ufil 20134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator