MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fixufil Structured version   Unicode version

Theorem fixufil 20715
Description: The condition describing a fixed ultrafilter always produces an ultrafilter. (Contributed by Jeff Hankins, 9-Dec-2009.) (Revised by Mario Carneiro, 12-Dec-2013.) (Revised by Stefan O'Rear, 29-Jul-2015.)
Assertion
Ref Expression
fixufil  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { x  e.  ~P X  |  A  e.  x }  e.  ( UFil `  X ) )
Distinct variable groups:    x, A    x, X    x, V

Proof of Theorem fixufil
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 uffix 20714 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X )  ->  ( { { A } }  e.  ( fBas `  X )  /\  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) ) )
21simprd 461 . . 3  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) )
31simpld 457 . . . 4  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { { A } }  e.  ( fBas `  X ) )
4 fgcl 20671 . . . 4  |-  ( { { A } }  e.  ( fBas `  X
)  ->  ( X filGen { { A } } )  e.  ( Fil `  X ) )
53, 4syl 17 . . 3  |-  ( ( X  e.  V  /\  A  e.  X )  ->  ( X filGen { { A } } )  e.  ( Fil `  X
) )
62, 5eqeltrd 2490 . 2  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { x  e.  ~P X  |  A  e.  x }  e.  ( Fil `  X ) )
7 undif2 3848 . . . . . . . . . 10  |-  ( y  u.  ( X  \ 
y ) )  =  ( y  u.  X
)
8 elpwi 3964 . . . . . . . . . . 11  |-  ( y  e.  ~P X  -> 
y  C_  X )
9 ssequn1 3613 . . . . . . . . . . 11  |-  ( y 
C_  X  <->  ( y  u.  X )  =  X )
108, 9sylib 196 . . . . . . . . . 10  |-  ( y  e.  ~P X  -> 
( y  u.  X
)  =  X )
117, 10syl5req 2456 . . . . . . . . 9  |-  ( y  e.  ~P X  ->  X  =  ( y  u.  ( X  \  y
) ) )
1211eleq2d 2472 . . . . . . . 8  |-  ( y  e.  ~P X  -> 
( A  e.  X  <->  A  e.  ( y  u.  ( X  \  y
) ) ) )
1312biimpac 484 . . . . . . 7  |-  ( ( A  e.  X  /\  y  e.  ~P X
)  ->  A  e.  ( y  u.  ( X  \  y ) ) )
14 elun 3584 . . . . . . 7  |-  ( A  e.  ( y  u.  ( X  \  y
) )  <->  ( A  e.  y  \/  A  e.  ( X  \  y
) ) )
1513, 14sylib 196 . . . . . 6  |-  ( ( A  e.  X  /\  y  e.  ~P X
)  ->  ( A  e.  y  \/  A  e.  ( X  \  y
) ) )
1615adantll 712 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  ( A  e.  y  \/  A  e.  ( X  \  y ) ) )
17 ibar 502 . . . . . . 7  |-  ( y  e.  ~P X  -> 
( A  e.  y  <-> 
( y  e.  ~P X  /\  A  e.  y ) ) )
1817adantl 464 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  ( A  e.  y  <->  ( y  e.  ~P X  /\  A  e.  y ) ) )
19 difss 3570 . . . . . . . . 9  |-  ( X 
\  y )  C_  X
20 elpw2g 4557 . . . . . . . . 9  |-  ( X  e.  V  ->  (
( X  \  y
)  e.  ~P X  <->  ( X  \  y ) 
C_  X ) )
2119, 20mpbiri 233 . . . . . . . 8  |-  ( X  e.  V  ->  ( X  \  y )  e. 
~P X )
2221ad2antrr 724 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  ( X  \  y )  e. 
~P X )
2322biantrurd 506 . . . . . 6  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  ( A  e.  ( X  \  y )  <->  ( ( X  \  y )  e. 
~P X  /\  A  e.  ( X  \  y
) ) ) )
2418, 23orbi12d 708 . . . . 5  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  (
( A  e.  y  \/  A  e.  ( X  \  y ) )  <->  ( ( y  e.  ~P X  /\  A  e.  y )  \/  ( ( X  \ 
y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) ) )
2516, 24mpbid 210 . . . 4  |-  ( ( ( X  e.  V  /\  A  e.  X
)  /\  y  e.  ~P X )  ->  (
( y  e.  ~P X  /\  A  e.  y )  \/  ( ( X  \  y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) )
2625ralrimiva 2818 . . 3  |-  ( ( X  e.  V  /\  A  e.  X )  ->  A. y  e.  ~P  X ( ( y  e.  ~P X  /\  A  e.  y )  \/  ( ( X  \ 
y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) )
27 eleq2 2475 . . . . . 6  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
2827elrab 3207 . . . . 5  |-  ( y  e.  { x  e. 
~P X  |  A  e.  x }  <->  ( y  e.  ~P X  /\  A  e.  y ) )
29 eleq2 2475 . . . . . 6  |-  ( x  =  ( X  \ 
y )  ->  ( A  e.  x  <->  A  e.  ( X  \  y
) ) )
3029elrab 3207 . . . . 5  |-  ( ( X  \  y )  e.  { x  e. 
~P X  |  A  e.  x }  <->  ( ( X  \  y )  e. 
~P X  /\  A  e.  ( X  \  y
) ) )
3128, 30orbi12i 519 . . . 4  |-  ( ( y  e.  { x  e.  ~P X  |  A  e.  x }  \/  ( X  \  y )  e. 
{ x  e.  ~P X  |  A  e.  x } )  <->  ( (
y  e.  ~P X  /\  A  e.  y
)  \/  ( ( X  \  y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) )
3231ralbii 2835 . . 3  |-  ( A. y  e.  ~P  X
( y  e.  {
x  e.  ~P X  |  A  e.  x }  \/  ( X  \  y )  e.  {
x  e.  ~P X  |  A  e.  x } )  <->  A. y  e.  ~P  X ( ( y  e.  ~P X  /\  A  e.  y
)  \/  ( ( X  \  y )  e.  ~P X  /\  A  e.  ( X  \  y ) ) ) )
3326, 32sylibr 212 . 2  |-  ( ( X  e.  V  /\  A  e.  X )  ->  A. y  e.  ~P  X ( y  e. 
{ x  e.  ~P X  |  A  e.  x }  \/  ( X  \  y )  e. 
{ x  e.  ~P X  |  A  e.  x } ) )
34 isufil 20696 . 2  |-  ( { x  e.  ~P X  |  A  e.  x }  e.  ( UFil `  X )  <->  ( {
x  e.  ~P X  |  A  e.  x }  e.  ( Fil `  X )  /\  A. y  e.  ~P  X
( y  e.  {
x  e.  ~P X  |  A  e.  x }  \/  ( X  \  y )  e.  {
x  e.  ~P X  |  A  e.  x } ) ) )
356, 33, 34sylanbrc 662 1  |-  ( ( X  e.  V  /\  A  e.  X )  ->  { x  e.  ~P X  |  A  e.  x }  e.  ( UFil `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   {crab 2758    \ cdif 3411    u. cun 3412    C_ wss 3414   ~Pcpw 3955   {csn 3972   ` cfv 5569  (class class class)co 6278   fBascfbas 18726   filGencfg 18727   Filcfil 20638   UFilcufil 20692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-int 4228  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-fbas 18736  df-fg 18737  df-fil 20639  df-ufil 20694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator