MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fival Structured version   Unicode version

Theorem fival 7872
Description: The set of all the finite intersections of the elements of  A. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fival  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Distinct variable groups:    x, y, A    x, V
Allowed substitution hint:    V( y)

Proof of Theorem fival
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 3122 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 simpr 461 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  =  |^| x )
3 inss1 3718 . . . . . . . . . 10  |-  ( ~P A  i^i  Fin )  C_ 
~P A
43sseli 3500 . . . . . . . . 9  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  e.  ~P A )
54elpwid 4020 . . . . . . . 8  |-  ( x  e.  ( ~P A  i^i  Fin )  ->  x  C_  A )
6 eqvisset 3121 . . . . . . . . 9  |-  ( y  =  |^| x  ->  |^| x  e.  _V )
7 intex 4603 . . . . . . . . 9  |-  ( x  =/=  (/)  <->  |^| x  e.  _V )
86, 7sylibr 212 . . . . . . . 8  |-  ( y  =  |^| x  ->  x  =/=  (/) )
9 intssuni2 4307 . . . . . . . 8  |-  ( ( x  C_  A  /\  x  =/=  (/) )  ->  |^| x  C_ 
U. A )
105, 8, 9syl2an 477 . . . . . . 7  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  |^| x  C_ 
U. A )
112, 10eqsstrd 3538 . . . . . 6  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  C_ 
U. A )
12 selpw 4017 . . . . . 6  |-  ( y  e.  ~P U. A  <->  y 
C_  U. A )
1311, 12sylibr 212 . . . . 5  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  =  |^| x )  ->  y  e.  ~P U. A )
1413rexlimiva 2951 . . . 4  |-  ( E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x  ->  y  e.  ~P U. A )
1514abssi 3575 . . 3  |-  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_  ~P U. A
16 uniexg 6581 . . . 4  |-  ( A  e.  V  ->  U. A  e.  _V )
17 pwexg 4631 . . . 4  |-  ( U. A  e.  _V  ->  ~P
U. A  e.  _V )
1816, 17syl 16 . . 3  |-  ( A  e.  V  ->  ~P U. A  e.  _V )
19 ssexg 4593 . . 3  |-  ( ( { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  C_ 
~P U. A  /\  ~P U. A  e.  _V )  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
2015, 18, 19sylancr 663 . 2  |-  ( A  e.  V  ->  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )
21 pweq 4013 . . . . . 6  |-  ( z  =  A  ->  ~P z  =  ~P A
)
2221ineq1d 3699 . . . . 5  |-  ( z  =  A  ->  ( ~P z  i^i  Fin )  =  ( ~P A  i^i  Fin ) )
2322rexeqdv 3065 . . . 4  |-  ( z  =  A  ->  ( E. x  e.  ( ~P z  i^i  Fin )
y  =  |^| x  <->  E. x  e.  ( ~P A  i^i  Fin )
y  =  |^| x
) )
2423abbidv 2603 . . 3  |-  ( z  =  A  ->  { y  |  E. x  e.  ( ~P z  i^i 
Fin ) y  = 
|^| x }  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
25 df-fi 7871 . . 3  |-  fi  =  ( z  e.  _V  |->  { y  |  E. x  e.  ( ~P z  i^i  Fin ) y  =  |^| x }
)
2624, 25fvmptg 5948 . 2  |-  ( ( A  e.  _V  /\  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }  e.  _V )  ->  ( fi `  A )  =  {
y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x } )
271, 20, 26syl2anc 661 1  |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin ) y  =  |^| x }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U.cuni 4245   |^|cint 4282   ` cfv 5588   Fincfn 7516   ficfi 7870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5551  df-fun 5590  df-fv 5596  df-fi 7871
This theorem is referenced by:  elfi  7873  fi0  7880
  Copyright terms: Public domain W3C validator