MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiuncmp Structured version   Unicode version

Theorem fiuncmp 19698
Description: A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
fiuncmp.1  |-  X  = 
U. J
Assertion
Ref Expression
fiuncmp  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  U_ x  e.  A  B )  e.  Comp )
Distinct variable groups:    x, A    x, J
Allowed substitution hints:    B( x)    X( x)

Proof of Theorem fiuncmp
Dummy variables  t 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3523 . 2  |-  A  C_  A
2 simp2 997 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  A  e.  Fin )
3 sseq1 3525 . . . . . 6  |-  ( t  =  (/)  ->  ( t 
C_  A  <->  (/)  C_  A
) )
4 iuneq1 4339 . . . . . . . . 9  |-  ( t  =  (/)  ->  U_ x  e.  t  B  =  U_ x  e.  (/)  B )
5 0iun 4382 . . . . . . . . 9  |-  U_ x  e.  (/)  B  =  (/)
64, 5syl6eq 2524 . . . . . . . 8  |-  ( t  =  (/)  ->  U_ x  e.  t  B  =  (/) )
76oveq2d 6300 . . . . . . 7  |-  ( t  =  (/)  ->  ( Jt  U_ x  e.  t  B
)  =  ( Jt  (/) ) )
87eleq1d 2536 . . . . . 6  |-  ( t  =  (/)  ->  ( ( Jt 
U_ x  e.  t  B )  e.  Comp  <->  ( Jt  (/) )  e.  Comp )
)
93, 8imbi12d 320 . . . . 5  |-  ( t  =  (/)  ->  ( ( t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) 
<->  ( (/)  C_  A  -> 
( Jt  (/) )  e.  Comp ) ) )
109imbi2d 316 . . . 4  |-  ( t  =  (/)  ->  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( (/)  C_  A  -> 
( Jt  (/) )  e.  Comp ) ) ) )
11 sseq1 3525 . . . . . 6  |-  ( t  =  y  ->  (
t  C_  A  <->  y  C_  A ) )
12 iuneq1 4339 . . . . . . . 8  |-  ( t  =  y  ->  U_ x  e.  t  B  =  U_ x  e.  y  B )
1312oveq2d 6300 . . . . . . 7  |-  ( t  =  y  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  y  B
) )
1413eleq1d 2536 . . . . . 6  |-  ( t  =  y  ->  (
( Jt  U_ x  e.  t  B )  e.  Comp  <->  ( Jt  U_ x  e.  y  B )  e.  Comp )
)
1511, 14imbi12d 320 . . . . 5  |-  ( t  =  y  ->  (
( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) 
<->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) ) )
1615imbi2d 316 . . . 4  |-  ( t  =  y  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) ) ) )
17 sseq1 3525 . . . . . 6  |-  ( t  =  ( y  u. 
{ z } )  ->  ( t  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
18 iuneq1 4339 . . . . . . . 8  |-  ( t  =  ( y  u. 
{ z } )  ->  U_ x  e.  t  B  =  U_ x  e.  ( y  u.  {
z } ) B )
1918oveq2d 6300 . . . . . . 7  |-  ( t  =  ( y  u. 
{ z } )  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  ( y  u.  {
z } ) B ) )
2019eleq1d 2536 . . . . . 6  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( Jt  U_ x  e.  t  B
)  e.  Comp  <->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
)
2117, 20imbi12d 320 . . . . 5  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( t 
C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp )  <->  ( ( y  u.  {
z } )  C_  A  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
) )
2221imbi2d 316 . . . 4  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( ( y  u. 
{ z } ) 
C_  A  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp ) ) ) )
23 sseq1 3525 . . . . . 6  |-  ( t  =  A  ->  (
t  C_  A  <->  A  C_  A
) )
24 iuneq1 4339 . . . . . . . 8  |-  ( t  =  A  ->  U_ x  e.  t  B  =  U_ x  e.  A  B
)
2524oveq2d 6300 . . . . . . 7  |-  ( t  =  A  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  A  B
) )
2625eleq1d 2536 . . . . . 6  |-  ( t  =  A  ->  (
( Jt  U_ x  e.  t  B )  e.  Comp  <->  ( Jt  U_ x  e.  A  B
)  e.  Comp )
)
2723, 26imbi12d 320 . . . . 5  |-  ( t  =  A  ->  (
( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) 
<->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) )
2827imbi2d 316 . . . 4  |-  ( t  =  A  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) ) )
29 rest0 19464 . . . . . . 7  |-  ( J  e.  Top  ->  ( Jt  (/) )  =  { (/) } )
30 0cmp 19688 . . . . . . 7  |-  { (/) }  e.  Comp
3129, 30syl6eqel 2563 . . . . . 6  |-  ( J  e.  Top  ->  ( Jt  (/) )  e.  Comp )
32313ad2ant1 1017 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  (/) )  e. 
Comp )
3332a1d 25 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( (/)  C_  A  ->  ( Jt  (/) )  e.  Comp ) )
34 ssun1 3667 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
35 id 22 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  A  ->  ( y  u.  {
z } )  C_  A )
3634, 35syl5ss 3515 . . . . . . . 8  |-  ( ( y  u.  { z } )  C_  A  ->  y  C_  A )
3736imim1i 58 . . . . . . 7  |-  ( ( y  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp ) )
38 simpl1 999 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  J  e.  Top )
39 iunxun 4407 . . . . . . . . . . . 12  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
40 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )
41 cmptop 19689 . . . . . . . . . . . . . 14  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Comp  -> 
( Jt  U_ x  e.  y  B )  e.  Top )
42 restrcl 19452 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Top  ->  ( J  e.  _V  /\ 
U_ x  e.  y  B  e.  _V )
)
4342simprd 463 . . . . . . . . . . . . . 14  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Top  ->  U_ x  e.  y  B  e.  _V )
4440, 41, 433syl 20 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  y  B  e.  _V )
45 nfcv 2629 . . . . . . . . . . . . . . . 16  |-  F/_ t B
46 nfcsb1v 3451 . . . . . . . . . . . . . . . 16  |-  F/_ x [_ t  /  x ]_ B
47 csbeq1a 3444 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  B  =  [_ t  /  x ]_ B )
4845, 46, 47cbviun 4362 . . . . . . . . . . . . . . 15  |-  U_ x  e.  { z } B  =  U_ t  e.  {
z } [_ t  /  x ]_ B
49 vex 3116 . . . . . . . . . . . . . . . 16  |-  z  e. 
_V
50 csbeq1 3438 . . . . . . . . . . . . . . . 16  |-  ( t  =  z  ->  [_ t  /  x ]_ B  = 
[_ z  /  x ]_ B )
5149, 50iunxsn 4405 . . . . . . . . . . . . . . 15  |-  U_ t  e.  { z } [_ t  /  x ]_ B  =  [_ z  /  x ]_ B
5248, 51eqtri 2496 . . . . . . . . . . . . . 14  |-  U_ x  e.  { z } B  =  [_ z  /  x ]_ B
53 ssun2 3668 . . . . . . . . . . . . . . . . . 18  |-  { z }  C_  ( y  u.  { z } )
54 simprl 755 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
y  u.  { z } )  C_  A
)
5553, 54syl5ss 3515 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  { z }  C_  A )
5649snss 4151 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  A  <->  { z }  C_  A )
5755, 56sylibr 212 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  z  e.  A )
58 simpl3 1001 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  A. x  e.  A  ( Jt  B
)  e.  Comp )
59 nfv 1683 . . . . . . . . . . . . . . . . . 18  |-  F/ t ( Jt  B )  e.  Comp
60 nfcv 2629 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x J
61 nfcv 2629 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ xt
6260, 61, 46nfov 6307 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
( Jt  [_ t  /  x ]_ B )
6362nfel1 2645 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( Jt  [_ t  /  x ]_ B )  e.  Comp
6447oveq2d 6300 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  t  ->  ( Jt  B )  =  ( Jt 
[_ t  /  x ]_ B ) )
6564eleq1d 2536 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  (
( Jt  B )  e.  Comp  <->  ( Jt  [_ t  /  x ]_ B )  e.  Comp ) )
6659, 63, 65cbvral 3084 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  A  ( Jt  B )  e.  Comp  <->  A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp )
6758, 66sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp )
6850oveq2d 6300 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  z  ->  ( Jt  [_ t  /  x ]_ B )  =  ( Jt 
[_ z  /  x ]_ B ) )
6968eleq1d 2536 . . . . . . . . . . . . . . . . 17  |-  ( t  =  z  ->  (
( Jt  [_ t  /  x ]_ B )  e.  Comp  <->  ( Jt  [_ z  /  x ]_ B )  e.  Comp ) )
7069rspcv 3210 . . . . . . . . . . . . . . . 16  |-  ( z  e.  A  ->  ( A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp  -> 
( Jt  [_ z  /  x ]_ B )  e.  Comp ) )
7157, 67, 70sylc 60 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  [_ z  /  x ]_ B )  e.  Comp )
72 cmptop 19689 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Comp  -> 
( Jt  [_ z  /  x ]_ B )  e.  Top )
73 restrcl 19452 . . . . . . . . . . . . . . . 16  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Top  ->  ( J  e.  _V  /\ 
[_ z  /  x ]_ B  e.  _V ) )
7473simprd 463 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Top  ->  [_ z  /  x ]_ B  e.  _V )
7571, 72, 743syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  [_ z  /  x ]_ B  e. 
_V )
7652, 75syl5eqel 2559 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  { z } B  e.  _V )
77 unexg 6585 . . . . . . . . . . . . 13  |-  ( (
U_ x  e.  y  B  e.  _V  /\  U_ x  e.  { z } B  e.  _V )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e. 
_V )
7844, 76, 77syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  y  B  u.  U_ x  e. 
{ z } B
)  e.  _V )
7939, 78syl5eqel 2559 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )
80 resttop 19455 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  U_ x  e.  ( y  u.  { z } ) B  e.  _V )  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Top )
8138, 79, 80syl2anc 661 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Top )
82 eqid 2467 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
8382restin 19461 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  U_ x  e.  ( y  u.  { z } ) B  e.  _V )  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  =  ( Jt  (
U_ x  e.  ( y  u.  { z } ) B  i^i  U. J ) ) )
8438, 79, 83syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( Jt  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) ) )
8584unieqd 4255 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  = 
U. ( Jt  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
) ) )
86 inss2 3719 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  C_  U. J
87 fiuncmp.1 . . . . . . . . . . . . . 14  |-  X  = 
U. J
8886, 87sseqtr4i 3537 . . . . . . . . . . . . 13  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  C_  X
8987restuni 19457 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J )  C_  X
)  ->  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  U. ( Jt  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J ) ) )
9038, 88, 89sylancl 662 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  (
y  u.  { z } ) B  i^i  U. J )  =  U. ( Jt  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) ) )
9185, 90eqtr4d 2511 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) )
9252uneq2i 3655 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  y  B  u.  U_ x  e.  {
z } B )  =  ( U_ x  e.  y  B  u.  [_ z  /  x ]_ B )
9339, 92eqtri 2496 . . . . . . . . . . . . 13  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  [_ z  /  x ]_ B )
9493ineq1i 3696 . . . . . . . . . . . 12  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  ( (
U_ x  e.  y  B  u.  [_ z  /  x ]_ B )  i^i  U. J )
95 indir 3746 . . . . . . . . . . . 12  |-  ( (
U_ x  e.  y  B  u.  [_ z  /  x ]_ B )  i^i  U. J )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J ) )
9694, 95eqtri 2496 . . . . . . . . . . 11  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  ( (
U_ x  e.  y  B  i^i  U. J
)  u.  ( [_ z  /  x ]_ B  i^i  U. J ) )
9791, 96syl6eq 2524 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J
) ) )
98 inss1 3718 . . . . . . . . . . . . . . 15  |-  ( U_ x  e.  y  B  i^i  U. J )  C_  U_ x  e.  y  B
99 ssun1 3667 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  y  B  C_  ( U_ x  e.  y  B  u.  U_ x  e. 
{ z } B
)
10099, 39sseqtr4i 3537 . . . . . . . . . . . . . . 15  |-  U_ x  e.  y  B  C_  U_ x  e.  ( y  u.  {
z } ) B
10198, 100sstri 3513 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  y  B  i^i  U. J )  C_  U_ x  e.  ( y  u.  { z } ) B
102101a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  y  B  i^i  U. J ) 
C_  U_ x  e.  ( y  u.  { z } ) B )
103 restabs 19460 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( U_ x  e.  y  B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B  /\  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )  -> 
( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( U_ x  e.  y  B  i^i  U. J ) )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10438, 102, 79, 103syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10582restin 19461 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  U_ x  e.  y  B  e.  _V )  -> 
( Jt  U_ x  e.  y  B )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10638, 44, 105syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  y  B )  =  ( Jt  (
U_ x  e.  y  B  i^i  U. J
) ) )
107104, 106eqtr4d 2511 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  =  ( Jt 
U_ x  e.  y  B ) )
108107, 40eqeltrd 2555 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  e.  Comp )
109 inss1 3718 . . . . . . . . . . . . . . 15  |-  ( [_ z  /  x ]_ B  i^i  U. J )  C_  [_ z  /  x ]_ B
110 ssun2 3668 . . . . . . . . . . . . . . . . 17  |-  U_ x  e.  { z } B  C_  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
111110, 39sseqtr4i 3537 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  { z } B  C_ 
U_ x  e.  ( y  u.  { z } ) B
11252, 111eqsstr3i 3535 . . . . . . . . . . . . . . 15  |-  [_ z  /  x ]_ B  C_  U_ x  e.  ( y  u.  { z } ) B
113109, 112sstri 3513 . . . . . . . . . . . . . 14  |-  ( [_ z  /  x ]_ B  i^i  U. J )  C_  U_ x  e.  ( y  u.  { z } ) B
114113a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( [_ z  /  x ]_ B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B )
115 restabs 19460 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( [_ z  /  x ]_ B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B  /\  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )  -> 
( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( [_ z  /  x ]_ B  i^i  U. J ) )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11638, 114, 79, 115syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11782restin 19461 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  [_ z  /  x ]_ B  e.  _V )  ->  ( Jt  [_ z  /  x ]_ B )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11838, 75, 117syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  [_ z  /  x ]_ B )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
119116, 118eqtr4d 2511 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  =  ( Jt 
[_ z  /  x ]_ B ) )
120119, 71eqeltrd 2555 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  e.  Comp )
121 eqid 2467 . . . . . . . . . . 11  |-  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  = 
U. ( Jt  U_ x  e.  ( y  u.  {
z } ) B )
122121uncmp 19697 . . . . . . . . . 10  |-  ( ( ( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Top  /\  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J ) ) )  /\  ( ( ( Jt 
U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  e.  Comp  /\  ( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( [_ z  /  x ]_ B  i^i  U. J ) )  e. 
Comp ) )  -> 
( Jt  U_ x  e.  ( y  u.  { z } ) B )  e.  Comp )
12381, 97, 108, 120, 122syl22anc 1229 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp )
124123exp32 605 . . . . . . . 8  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( ( Jt  U_ x  e.  y  B )  e.  Comp  -> 
( Jt  U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) )
125124a2d 26 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( ( y  u.  { z } )  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) )
12637, 125syl5 32 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y 
C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u. 
{ z } ) 
C_  A  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp ) ) )
127126a2i 13 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  -> 
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
( y  u.  {
z } )  C_  A  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
) )
128127a1i 11 . . . 4  |-  ( y  e.  Fin  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
y  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp ) )  ->  (
( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) ) )
12910, 16, 22, 28, 33, 128findcard2 7760 . . 3  |-  ( A  e.  Fin  ->  (
( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) )
1302, 129mpcom 36 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) )
1311, 130mpi 17 1  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  U_ x  e.  A  B )  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   [_csb 3435    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   U.cuni 4245   U_ciun 4325  (class class class)co 6284   Fincfn 7516   ↾t crest 14676   Topctop 19189   Compccmp 19680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-fin 7520  df-fi 7871  df-rest 14678  df-topgen 14699  df-top 19194  df-bases 19196  df-topon 19197  df-cmp 19681
This theorem is referenced by:  xkococnlem  19923
  Copyright terms: Public domain W3C validator