MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiuncmp Structured version   Unicode version

Theorem fiuncmp 20361
Description: A finite union of compact sets is compact. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
fiuncmp.1  |-  X  = 
U. J
Assertion
Ref Expression
fiuncmp  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  U_ x  e.  A  B )  e.  Comp )
Distinct variable groups:    x, A    x, J
Allowed substitution hints:    B( x)    X( x)

Proof of Theorem fiuncmp
Dummy variables  t 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3426 . 2  |-  A  C_  A
2 simp2 1006 . . 3  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  A  e.  Fin )
3 sseq1 3428 . . . . . 6  |-  ( t  =  (/)  ->  ( t 
C_  A  <->  (/)  C_  A
) )
4 iuneq1 4256 . . . . . . . . 9  |-  ( t  =  (/)  ->  U_ x  e.  t  B  =  U_ x  e.  (/)  B )
5 0iun 4299 . . . . . . . . 9  |-  U_ x  e.  (/)  B  =  (/)
64, 5syl6eq 2478 . . . . . . . 8  |-  ( t  =  (/)  ->  U_ x  e.  t  B  =  (/) )
76oveq2d 6265 . . . . . . 7  |-  ( t  =  (/)  ->  ( Jt  U_ x  e.  t  B
)  =  ( Jt  (/) ) )
87eleq1d 2490 . . . . . 6  |-  ( t  =  (/)  ->  ( ( Jt 
U_ x  e.  t  B )  e.  Comp  <->  ( Jt  (/) )  e.  Comp )
)
93, 8imbi12d 321 . . . . 5  |-  ( t  =  (/)  ->  ( ( t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) 
<->  ( (/)  C_  A  -> 
( Jt  (/) )  e.  Comp ) ) )
109imbi2d 317 . . . 4  |-  ( t  =  (/)  ->  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( (/)  C_  A  -> 
( Jt  (/) )  e.  Comp ) ) ) )
11 sseq1 3428 . . . . . 6  |-  ( t  =  y  ->  (
t  C_  A  <->  y  C_  A ) )
12 iuneq1 4256 . . . . . . . 8  |-  ( t  =  y  ->  U_ x  e.  t  B  =  U_ x  e.  y  B )
1312oveq2d 6265 . . . . . . 7  |-  ( t  =  y  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  y  B
) )
1413eleq1d 2490 . . . . . 6  |-  ( t  =  y  ->  (
( Jt  U_ x  e.  t  B )  e.  Comp  <->  ( Jt  U_ x  e.  y  B )  e.  Comp )
)
1511, 14imbi12d 321 . . . . 5  |-  ( t  =  y  ->  (
( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) 
<->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) ) )
1615imbi2d 317 . . . 4  |-  ( t  =  y  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) ) ) )
17 sseq1 3428 . . . . . 6  |-  ( t  =  ( y  u. 
{ z } )  ->  ( t  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
18 iuneq1 4256 . . . . . . . 8  |-  ( t  =  ( y  u. 
{ z } )  ->  U_ x  e.  t  B  =  U_ x  e.  ( y  u.  {
z } ) B )
1918oveq2d 6265 . . . . . . 7  |-  ( t  =  ( y  u. 
{ z } )  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  ( y  u.  {
z } ) B ) )
2019eleq1d 2490 . . . . . 6  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( Jt  U_ x  e.  t  B
)  e.  Comp  <->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
)
2117, 20imbi12d 321 . . . . 5  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( t 
C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp )  <->  ( ( y  u.  {
z } )  C_  A  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
) )
2221imbi2d 317 . . . 4  |-  ( t  =  ( y  u. 
{ z } )  ->  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( ( y  u. 
{ z } ) 
C_  A  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp ) ) ) )
23 sseq1 3428 . . . . . 6  |-  ( t  =  A  ->  (
t  C_  A  <->  A  C_  A
) )
24 iuneq1 4256 . . . . . . . 8  |-  ( t  =  A  ->  U_ x  e.  t  B  =  U_ x  e.  A  B
)
2524oveq2d 6265 . . . . . . 7  |-  ( t  =  A  ->  ( Jt  U_ x  e.  t  B )  =  ( Jt  U_ x  e.  A  B
) )
2625eleq1d 2490 . . . . . 6  |-  ( t  =  A  ->  (
( Jt  U_ x  e.  t  B )  e.  Comp  <->  ( Jt  U_ x  e.  A  B
)  e.  Comp )
)
2723, 26imbi12d 321 . . . . 5  |-  ( t  =  A  ->  (
( t  C_  A  ->  ( Jt  U_ x  e.  t  B )  e.  Comp ) 
<->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) )
2827imbi2d 317 . . . 4  |-  ( t  =  A  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
t  C_  A  ->  ( Jt 
U_ x  e.  t  B )  e.  Comp ) )  <->  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B
)  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) ) )
29 rest0 20127 . . . . . . 7  |-  ( J  e.  Top  ->  ( Jt  (/) )  =  { (/) } )
30 0cmp 20351 . . . . . . 7  |-  { (/) }  e.  Comp
3129, 30syl6eqel 2514 . . . . . 6  |-  ( J  e.  Top  ->  ( Jt  (/) )  e.  Comp )
32313ad2ant1 1026 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  (/) )  e. 
Comp )
3332a1d 26 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( (/)  C_  A  ->  ( Jt  (/) )  e.  Comp ) )
34 ssun1 3572 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
35 id 22 . . . . . . . . 9  |-  ( ( y  u.  { z } )  C_  A  ->  ( y  u.  {
z } )  C_  A )
3634, 35syl5ss 3418 . . . . . . . 8  |-  ( ( y  u.  { z } )  C_  A  ->  y  C_  A )
3736imim1i 60 . . . . . . 7  |-  ( ( y  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp ) )
38 simpl1 1008 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  J  e.  Top )
39 iunxun 4327 . . . . . . . . . . . 12  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
40 simprr 764 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )
41 cmptop 20352 . . . . . . . . . . . . . 14  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Comp  -> 
( Jt  U_ x  e.  y  B )  e.  Top )
42 restrcl 20115 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Top  ->  ( J  e.  _V  /\ 
U_ x  e.  y  B  e.  _V )
)
4342simprd 464 . . . . . . . . . . . . . 14  |-  ( ( Jt 
U_ x  e.  y  B )  e.  Top  ->  U_ x  e.  y  B  e.  _V )
4440, 41, 433syl 18 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  y  B  e.  _V )
45 nfcv 2569 . . . . . . . . . . . . . . . 16  |-  F/_ t B
46 nfcsb1v 3354 . . . . . . . . . . . . . . . 16  |-  F/_ x [_ t  /  x ]_ B
47 csbeq1a 3347 . . . . . . . . . . . . . . . 16  |-  ( x  =  t  ->  B  =  [_ t  /  x ]_ B )
4845, 46, 47cbviun 4279 . . . . . . . . . . . . . . 15  |-  U_ x  e.  { z } B  =  U_ t  e.  {
z } [_ t  /  x ]_ B
49 vex 3025 . . . . . . . . . . . . . . . 16  |-  z  e. 
_V
50 csbeq1 3341 . . . . . . . . . . . . . . . 16  |-  ( t  =  z  ->  [_ t  /  x ]_ B  = 
[_ z  /  x ]_ B )
5149, 50iunxsn 4325 . . . . . . . . . . . . . . 15  |-  U_ t  e.  { z } [_ t  /  x ]_ B  =  [_ z  /  x ]_ B
5248, 51eqtri 2450 . . . . . . . . . . . . . 14  |-  U_ x  e.  { z } B  =  [_ z  /  x ]_ B
53 ssun2 3573 . . . . . . . . . . . . . . . . . 18  |-  { z }  C_  ( y  u.  { z } )
54 simprl 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
y  u.  { z } )  C_  A
)
5553, 54syl5ss 3418 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  { z }  C_  A )
5649snss 4067 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  A  <->  { z }  C_  A )
5755, 56sylibr 215 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  z  e.  A )
58 simpl3 1010 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  A. x  e.  A  ( Jt  B
)  e.  Comp )
59 nfv 1755 . . . . . . . . . . . . . . . . . 18  |-  F/ t ( Jt  B )  e.  Comp
60 nfcv 2569 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x J
61 nfcv 2569 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ xt
6260, 61, 46nfov 6275 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x
( Jt  [_ t  /  x ]_ B )
6362nfel1 2583 . . . . . . . . . . . . . . . . . 18  |-  F/ x
( Jt  [_ t  /  x ]_ B )  e.  Comp
6447oveq2d 6265 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  t  ->  ( Jt  B )  =  ( Jt 
[_ t  /  x ]_ B ) )
6564eleq1d 2490 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  (
( Jt  B )  e.  Comp  <->  ( Jt  [_ t  /  x ]_ B )  e.  Comp ) )
6659, 63, 65cbvral 2992 . . . . . . . . . . . . . . . . 17  |-  ( A. x  e.  A  ( Jt  B )  e.  Comp  <->  A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp )
6758, 66sylib 199 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp )
6850oveq2d 6265 . . . . . . . . . . . . . . . . . 18  |-  ( t  =  z  ->  ( Jt  [_ t  /  x ]_ B )  =  ( Jt 
[_ z  /  x ]_ B ) )
6968eleq1d 2490 . . . . . . . . . . . . . . . . 17  |-  ( t  =  z  ->  (
( Jt  [_ t  /  x ]_ B )  e.  Comp  <->  ( Jt  [_ z  /  x ]_ B )  e.  Comp ) )
7069rspcv 3121 . . . . . . . . . . . . . . . 16  |-  ( z  e.  A  ->  ( A. t  e.  A  ( Jt  [_ t  /  x ]_ B )  e.  Comp  -> 
( Jt  [_ z  /  x ]_ B )  e.  Comp ) )
7157, 67, 70sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  [_ z  /  x ]_ B )  e.  Comp )
72 cmptop 20352 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Comp  -> 
( Jt  [_ z  /  x ]_ B )  e.  Top )
73 restrcl 20115 . . . . . . . . . . . . . . . 16  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Top  ->  ( J  e.  _V  /\ 
[_ z  /  x ]_ B  e.  _V ) )
7473simprd 464 . . . . . . . . . . . . . . 15  |-  ( ( Jt 
[_ z  /  x ]_ B )  e.  Top  ->  [_ z  /  x ]_ B  e.  _V )
7571, 72, 743syl 18 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  [_ z  /  x ]_ B  e. 
_V )
7652, 75syl5eqel 2510 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  { z } B  e.  _V )
77 unexg 6550 . . . . . . . . . . . . 13  |-  ( (
U_ x  e.  y  B  e.  _V  /\  U_ x  e.  { z } B  e.  _V )  ->  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )  e. 
_V )
7844, 76, 77syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  y  B  u.  U_ x  e. 
{ z } B
)  e.  _V )
7939, 78syl5eqel 2510 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )
80 resttop 20118 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  U_ x  e.  ( y  u.  { z } ) B  e.  _V )  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Top )
8138, 79, 80syl2anc 665 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Top )
82 eqid 2428 . . . . . . . . . . . . . . 15  |-  U. J  =  U. J
8382restin 20124 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  U_ x  e.  ( y  u.  { z } ) B  e.  _V )  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  =  ( Jt  (
U_ x  e.  ( y  u.  { z } ) B  i^i  U. J ) ) )
8438, 79, 83syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( Jt  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) ) )
8584unieqd 4172 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  = 
U. ( Jt  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
) ) )
86 inss2 3626 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  C_  U. J
87 fiuncmp.1 . . . . . . . . . . . . . 14  |-  X  = 
U. J
8886, 87sseqtr4i 3440 . . . . . . . . . . . . 13  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  C_  X
8987restuni 20120 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J )  C_  X
)  ->  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  U. ( Jt  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J ) ) )
9038, 88, 89sylancl 666 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  (
y  u.  { z } ) B  i^i  U. J )  =  U. ( Jt  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) ) )
9185, 90eqtr4d 2465 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( U_ x  e.  ( y  u.  {
z } ) B  i^i  U. J ) )
9252uneq2i 3560 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  y  B  u.  U_ x  e.  {
z } B )  =  ( U_ x  e.  y  B  u.  [_ z  /  x ]_ B )
9339, 92eqtri 2450 . . . . . . . . . . . . 13  |-  U_ x  e.  ( y  u.  {
z } ) B  =  ( U_ x  e.  y  B  u.  [_ z  /  x ]_ B )
9493ineq1i 3603 . . . . . . . . . . . 12  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  ( (
U_ x  e.  y  B  u.  [_ z  /  x ]_ B )  i^i  U. J )
95 indir 3664 . . . . . . . . . . . 12  |-  ( (
U_ x  e.  y  B  u.  [_ z  /  x ]_ B )  i^i  U. J )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J ) )
9694, 95eqtri 2450 . . . . . . . . . . 11  |-  ( U_ x  e.  ( y  u.  { z } ) B  i^i  U. J
)  =  ( (
U_ x  e.  y  B  i^i  U. J
)  u.  ( [_ z  /  x ]_ B  i^i  U. J ) )
9791, 96syl6eq 2478 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J
) ) )
98 inss1 3625 . . . . . . . . . . . . . . 15  |-  ( U_ x  e.  y  B  i^i  U. J )  C_  U_ x  e.  y  B
99 ssun1 3572 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  y  B  C_  ( U_ x  e.  y  B  u.  U_ x  e. 
{ z } B
)
10099, 39sseqtr4i 3440 . . . . . . . . . . . . . . 15  |-  U_ x  e.  y  B  C_  U_ x  e.  ( y  u.  {
z } ) B
10198, 100sstri 3416 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  y  B  i^i  U. J )  C_  U_ x  e.  ( y  u.  { z } ) B
102101a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( U_ x  e.  y  B  i^i  U. J ) 
C_  U_ x  e.  ( y  u.  { z } ) B )
103 restabs 20123 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( U_ x  e.  y  B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B  /\  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )  -> 
( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( U_ x  e.  y  B  i^i  U. J ) )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10438, 102, 79, 103syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10582restin 20124 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  U_ x  e.  y  B  e.  _V )  -> 
( Jt  U_ x  e.  y  B )  =  ( Jt  ( U_ x  e.  y  B  i^i  U. J ) ) )
10638, 44, 105syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  y  B )  =  ( Jt  (
U_ x  e.  y  B  i^i  U. J
) ) )
107104, 106eqtr4d 2465 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  =  ( Jt 
U_ x  e.  y  B ) )
108107, 40eqeltrd 2506 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  e.  Comp )
109 inss1 3625 . . . . . . . . . . . . . . 15  |-  ( [_ z  /  x ]_ B  i^i  U. J )  C_  [_ z  /  x ]_ B
110 ssun2 3573 . . . . . . . . . . . . . . . . 17  |-  U_ x  e.  { z } B  C_  ( U_ x  e.  y  B  u.  U_ x  e.  { z } B )
111110, 39sseqtr4i 3440 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  { z } B  C_ 
U_ x  e.  ( y  u.  { z } ) B
11252, 111eqsstr3i 3438 . . . . . . . . . . . . . . 15  |-  [_ z  /  x ]_ B  C_  U_ x  e.  ( y  u.  { z } ) B
113109, 112sstri 3416 . . . . . . . . . . . . . 14  |-  ( [_ z  /  x ]_ B  i^i  U. J )  C_  U_ x  e.  ( y  u.  { z } ) B
114113a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( [_ z  /  x ]_ B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B )
115 restabs 20123 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( [_ z  /  x ]_ B  i^i  U. J
)  C_  U_ x  e.  ( y  u.  {
z } ) B  /\  U_ x  e.  ( y  u.  {
z } ) B  e.  _V )  -> 
( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( [_ z  /  x ]_ B  i^i  U. J ) )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11638, 114, 79, 115syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11782restin 20124 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  [_ z  /  x ]_ B  e.  _V )  ->  ( Jt  [_ z  /  x ]_ B )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
11838, 75, 117syl2anc 665 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  [_ z  /  x ]_ B )  =  ( Jt  ( [_ z  /  x ]_ B  i^i  U. J ) ) )
119116, 118eqtr4d 2465 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  =  ( Jt 
[_ z  /  x ]_ B ) )
120119, 71eqeltrd 2506 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  (
( Jt  U_ x  e.  ( y  u.  { z } ) B )t  (
[_ z  /  x ]_ B  i^i  U. J
) )  e.  Comp )
121 eqid 2428 . . . . . . . . . . 11  |-  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  = 
U. ( Jt  U_ x  e.  ( y  u.  {
z } ) B )
122121uncmp 20360 . . . . . . . . . 10  |-  ( ( ( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Top  /\  U. ( Jt  U_ x  e.  ( y  u.  { z } ) B )  =  ( ( U_ x  e.  y  B  i^i  U. J )  u.  ( [_ z  /  x ]_ B  i^i  U. J ) ) )  /\  ( ( ( Jt 
U_ x  e.  ( y  u.  { z } ) B )t  (
U_ x  e.  y  B  i^i  U. J
) )  e.  Comp  /\  ( ( Jt  U_ x  e.  ( y  u.  {
z } ) B )t  ( [_ z  /  x ]_ B  i^i  U. J ) )  e. 
Comp ) )  -> 
( Jt  U_ x  e.  ( y  u.  { z } ) B )  e.  Comp )
12381, 97, 108, 120, 122syl22anc 1265 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  /\  ( ( y  u.  { z } )  C_  A  /\  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp )
124123exp32 608 . . . . . . . 8  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( ( Jt  U_ x  e.  y  B )  e.  Comp  -> 
( Jt  U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) )
125124a2d 29 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( ( y  u.  { z } )  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) )
12637, 125syl5 33 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y 
C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp )  ->  ( ( y  u. 
{ z } ) 
C_  A  ->  ( Jt  U_ x  e.  ( y  u.  { z } ) B )  e. 
Comp ) ) )
127126a2i 14 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( y  C_  A  ->  ( Jt  U_ x  e.  y  B )  e.  Comp ) )  -> 
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
( y  u.  {
z } )  C_  A  ->  ( Jt  U_ x  e.  ( y  u.  {
z } ) B )  e.  Comp )
) )
128127a1i 11 . . . 4  |-  ( y  e.  Fin  ->  (
( ( J  e. 
Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  (
y  C_  A  ->  ( Jt 
U_ x  e.  y  B )  e.  Comp ) )  ->  (
( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( ( y  u.  { z } )  C_  A  ->  ( Jt 
U_ x  e.  ( y  u.  { z } ) B )  e.  Comp ) ) ) )
12910, 16, 22, 28, 33, 128findcard2 7764 . . 3  |-  ( A  e.  Fin  ->  (
( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) ) )
1302, 129mpcom 37 . 2  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( A  C_  A  ->  ( Jt  U_ x  e.  A  B )  e.  Comp ) )
1311, 130mpi 20 1  |-  ( ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  ( Jt  B )  e.  Comp )  ->  ( Jt  U_ x  e.  A  B )  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   A.wral 2714   _Vcvv 3022   [_csb 3338    u. cun 3377    i^i cin 3378    C_ wss 3379   (/)c0 3704   {csn 3941   U.cuni 4162   U_ciun 4242  (class class class)co 6249   Fincfn 7524   ↾t crest 15262   Topctop 19859   Compccmp 20343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-1st 6751  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-er 7318  df-en 7525  df-dom 7526  df-fin 7528  df-fi 7878  df-rest 15264  df-topgen 15285  df-top 19863  df-bases 19864  df-topon 19865  df-cmp 20344
This theorem is referenced by:  xkococnlem  20616
  Copyright terms: Public domain W3C validator