MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fitop Structured version   Unicode version

Theorem fitop 19169
Description: A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009.)
Assertion
Ref Expression
fitop  |-  ( J  e.  Top  ->  ( fi `  J )  =  J )

Proof of Theorem fitop
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopn 19168 . . . 4  |-  ( ( J  e.  Top  /\  x  e.  J  /\  y  e.  J )  ->  ( x  i^i  y
)  e.  J )
213expib 1194 . . 3  |-  ( J  e.  Top  ->  (
( x  e.  J  /\  y  e.  J
)  ->  ( x  i^i  y )  e.  J
) )
32ralrimivv 2877 . 2  |-  ( J  e.  Top  ->  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
)
4 inficl 7874 . 2  |-  ( J  e.  Top  ->  ( A. x  e.  J  A. y  e.  J  ( x  i^i  y
)  e.  J  <->  ( fi `  J )  =  J ) )
53, 4mpbid 210 1  |-  ( J  e.  Top  ->  ( fi `  J )  =  J )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   A.wral 2807    i^i cin 3468   ` cfv 5579   ficfi 7859   Topctop 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-fin 7510  df-fi 7860  df-top 19159
This theorem is referenced by:  tgfiss  19252  leordtval2  19472  2ndcsb  19709  alexsubALTlem1  20275  prdsxmslem2  20760
  Copyright terms: Public domain W3C validator