MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisupcl Structured version   Unicode version

Theorem fisupcl 7722
Description: A nonempty finite set contains its supremum. (Contributed by Jeff Madsen, 9-May-2011.)
Assertion
Ref Expression
fisupcl  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  e.  B
)

Proof of Theorem fisupcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  R  Or  A )
21supval2 7710 . 2  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  =  (
iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
3 simpr3 996 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  C_  A )
4 breq2 4301 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
y R z  <->  y R x ) )
54rspcev 3078 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  y R x )  ->  E. z  e.  B  y R z )
65ex 434 . . . . . . . . 9  |-  ( x  e.  B  ->  (
y R x  ->  E. z  e.  B  y R z ) )
76ralrimivw 2805 . . . . . . . 8  |-  ( x  e.  B  ->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )
87a1d 25 . . . . . . 7  |-  ( x  e.  B  ->  ( A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z )  ->  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
98anim2d 565 . . . . . 6  |-  ( x  e.  B  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R
z ) )  -> 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) ) )
109rgen 2786 . . . . 5  |-  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
1110a1i 11 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
12 soss 4664 . . . . . 6  |-  ( B 
C_  A  ->  ( R  Or  A  ->  R  Or  B ) )
133, 1, 12sylc 60 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  R  Or  B )
14 simpr1 994 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  e.  Fin )
15 simpr2 995 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  B  =/=  (/) )
16 fisupg 7565 . . . . 5  |-  ( ( R  Or  B  /\  B  e.  Fin  /\  B  =/=  (/) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) ) )
1713, 14, 15, 16syl3anc 1218 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )
18 fisup2g 7721 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
19 ssrexv 3422 . . . . . 6  |-  ( B 
C_  A  ->  ( E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
203, 18, 19sylc 60 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
211, 20supeu 7709 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
22 riotass2 6084 . . . 4  |-  ( ( ( B  C_  A  /\  A. x  e.  B  ( ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )  /\  ( E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  /\  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )  ->  ( iota_ x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
233, 11, 17, 21, 22syl22anc 1219 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
2413, 17supeu 7709 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E! x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )
25 riotacl 6072 . . . 4  |-  ( E! x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( iota_ x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  B  y R z ) ) )  e.  B )
2624, 25syl 16 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  B  y R z ) ) )  e.  B )
2723, 26eqeltrrd 2518 . 2  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  -> 
( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  e.  B )
282, 27eqeltrd 2517 1  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2611   A.wral 2720   E.wrex 2721   E!wreu 2722    C_ wss 3333   (/)c0 3642   class class class wbr 4297    Or wor 4645   iota_crio 6056   Fincfn 7315   supcsup 7695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-om 6482  df-1o 6925  df-er 7106  df-en 7316  df-fin 7319  df-sup 7696
This theorem is referenced by:  fseqsupcl  11804  isercolllem2  13148  fsumcvg3  13211  mertenslem2  13350  prdsmet  19950  prdsbl  20071  mdegldg  21542  mdegcl  21545  aannenlem2  21800  aalioulem2  21804  ssnnssfz  26081  oddpwdc  26742  ballotlemiex  26889  erdszelem5  27088  heicant  28431  totbndbnd  28693  prdsbnd  28697  rencldnfilem  29164  aomclem2  29413  ssnn0ssfz  30746  supgtoreq  30748  supfirege  30749  fsuppmapnn0fiublem  30803
  Copyright terms: Public domain W3C validator