MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisseneq Structured version   Unicode version

Theorem fisseneq 7743
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )

Proof of Theorem fisseneq
StepHypRef Expression
1 df-pss 3497 . . . . . 6  |-  ( A 
C.  B  <->  ( A  C_  B  /\  A  =/= 
B ) )
2 pssinf 7742 . . . . . . 7  |-  ( ( A  C.  B  /\  A  ~~  B )  ->  -.  B  e.  Fin )
32expcom 435 . . . . . 6  |-  ( A 
~~  B  ->  ( A  C.  B  ->  -.  B  e.  Fin )
)
41, 3syl5bir 218 . . . . 5  |-  ( A 
~~  B  ->  (
( A  C_  B  /\  A  =/=  B
)  ->  -.  B  e.  Fin ) )
54expdimp 437 . . . 4  |-  ( ( A  ~~  B  /\  A  C_  B )  -> 
( A  =/=  B  ->  -.  B  e.  Fin ) )
65necon4ad 2687 . . 3  |-  ( ( A  ~~  B  /\  A  C_  B )  -> 
( B  e.  Fin  ->  A  =  B ) )
763impia 1193 . 2  |-  ( ( A  ~~  B  /\  A  C_  B  /\  B  e.  Fin )  ->  A  =  B )
873com13 1201 1  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662    C_ wss 3481    C. wpss 3482   class class class wbr 4453    ~~ cen 7525   Fincfn 7528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6696  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532
This theorem is referenced by:  en1eqsn  7761  en2eqpr  8397  en2eleq  8398  psgnunilem1  16391  sylow2blem1  16513  fislw  16518  sylow2  16519  cyggenod  16760  ablfac1c  16994  ablfac1eu  16996  fta1blem  22437  vieta1  22575  umgraex  24146  fiuneneq  31083
  Copyright terms: Public domain W3C validator