MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisseneq Structured version   Unicode version

Theorem fisseneq 7545
Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.)
Assertion
Ref Expression
fisseneq  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )

Proof of Theorem fisseneq
StepHypRef Expression
1 df-pss 3365 . . . . . 6  |-  ( A 
C.  B  <->  ( A  C_  B  /\  A  =/= 
B ) )
2 pssinf 7544 . . . . . . 7  |-  ( ( A  C.  B  /\  A  ~~  B )  ->  -.  B  e.  Fin )
32expcom 435 . . . . . 6  |-  ( A 
~~  B  ->  ( A  C.  B  ->  -.  B  e.  Fin )
)
41, 3syl5bir 218 . . . . 5  |-  ( A 
~~  B  ->  (
( A  C_  B  /\  A  =/=  B
)  ->  -.  B  e.  Fin ) )
54expdimp 437 . . . 4  |-  ( ( A  ~~  B  /\  A  C_  B )  -> 
( A  =/=  B  ->  -.  B  e.  Fin ) )
65necon4ad 2696 . . 3  |-  ( ( A  ~~  B  /\  A  C_  B )  -> 
( B  e.  Fin  ->  A  =  B ) )
763impia 1184 . 2  |-  ( ( A  ~~  B  /\  A  C_  B  /\  B  e.  Fin )  ->  A  =  B )
873com13 1192 1  |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A  ~~  B )  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2620    C_ wss 3349    C. wpss 3350   class class class wbr 4313    ~~ cen 7328   Fincfn 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-om 6498  df-er 7122  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335
This theorem is referenced by:  en1eqsn  7563  en2eqpr  8195  en2eleq  8196  psgnunilem1  16020  sylow2blem1  16140  fislw  16145  sylow2  16146  cyggenod  16382  ablfac1c  16594  ablfac1eu  16596  fta1blem  21662  vieta1  21800  umgraex  23279  fiuneneq  29588
  Copyright terms: Public domain W3C validator