MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiss Structured version   Unicode version

Theorem fiss 7880
Description: Subset relationship for function  fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  C_  ( fi `  B ) )

Proof of Theorem fiss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3511 . . . . . 6  |-  ( A 
C_  B  ->  ( B  C_  y  ->  A  C_  y ) )
21adantl 466 . . . . 5  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( B  C_  y  ->  A  C_  y )
)
32anim1d 564 . . . 4  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( ( B  C_  y  /\  A. x  e.  y  A. z  e.  y  ( x  i^i  z )  e.  y )  ->  ( A  C_  y  /\  A. x  e.  y  A. z  e.  y  ( x  i^i  z )  e.  y ) ) )
43ss2abdv 3573 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  ->  { y  |  ( B  C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) }  C_  { y  |  ( A 
C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) } )
5 intss 4303 . . 3  |-  ( { y  |  ( B 
C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) }  C_  { y  |  ( A 
C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) }  ->  |^|
{ y  |  ( A  C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) }  C_  |^|
{ y  |  ( B  C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) } )
64, 5syl 16 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  ->  |^| { y  |  ( A  C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) }  C_  |^|
{ y  |  ( B  C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) } )
7 ssexg 4593 . . . 4  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
87ancoms 453 . . 3  |-  ( ( B  e.  V  /\  A  C_  B )  ->  A  e.  _V )
9 dffi2 7879 . . 3  |-  ( A  e.  _V  ->  ( fi `  A )  = 
|^| { y  |  ( A  C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) } )
108, 9syl 16 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  =  |^| { y  |  ( A  C_  y  /\  A. x  e.  y  A. z  e.  y  ( x  i^i  z )  e.  y ) } )
11 dffi2 7879 . . 3  |-  ( B  e.  V  ->  ( fi `  B )  = 
|^| { y  |  ( B  C_  y  /\  A. x  e.  y  A. z  e.  y  (
x  i^i  z )  e.  y ) } )
1211adantr 465 . 2  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  B
)  =  |^| { y  |  ( B  C_  y  /\  A. x  e.  y  A. z  e.  y  ( x  i^i  z )  e.  y ) } )
136, 10, 123sstr4d 3547 1  |-  ( ( B  e.  V  /\  A  C_  B )  -> 
( fi `  A
)  C_  ( fi `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   _Vcvv 3113    i^i cin 3475    C_ wss 3476   |^|cint 4282   ` cfv 5586   ficfi 7866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-fin 7517  df-fi 7867
This theorem is referenced by:  fipwuni  7882  elfiun  7886  tgfiss  19259  ordtbas  19459  leordtval2  19479  lecldbas  19486  2ndcsb  19716  ptbasfi  19817  fclscmpi  20265  prdsxmslem2  20767
  Copyright terms: Public domain W3C validator