MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipwuni Structured version   Unicode version

Theorem fipwuni 7875
Description: The set of finite intersections of a set is contained in the powerset of the union of the elements of 
A. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
fipwuni  |-  ( fi
`  A )  C_  ~P U. A

Proof of Theorem fipwuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniexg 6572 . . . . 5  |-  ( A  e.  _V  ->  U. A  e.  _V )
2 pwexg 4624 . . . . 5  |-  ( U. A  e.  _V  ->  ~P
U. A  e.  _V )
31, 2syl 16 . . . 4  |-  ( A  e.  _V  ->  ~P U. A  e.  _V )
4 pwuni 4671 . . . 4  |-  A  C_  ~P U. A
5 fiss 7873 . . . 4  |-  ( ( ~P U. A  e. 
_V  /\  A  C_  ~P U. A )  ->  ( fi `  A )  C_  ( fi `  ~P U. A ) )
63, 4, 5sylancl 662 . . 3  |-  ( A  e.  _V  ->  ( fi `  A )  C_  ( fi `  ~P U. A ) )
7 ssinss1 3719 . . . . . . 7  |-  ( x 
C_  U. A  ->  (
x  i^i  y )  C_ 
U. A )
8 vex 3109 . . . . . . . 8  |-  x  e. 
_V
98elpw 4009 . . . . . . 7  |-  ( x  e.  ~P U. A  <->  x 
C_  U. A )
108inex1 4581 . . . . . . . 8  |-  ( x  i^i  y )  e. 
_V
1110elpw 4009 . . . . . . 7  |-  ( ( x  i^i  y )  e.  ~P U. A  <->  ( x  i^i  y ) 
C_  U. A )
127, 9, 113imtr4i 266 . . . . . 6  |-  ( x  e.  ~P U. A  ->  ( x  i^i  y
)  e.  ~P U. A )
1312adantr 465 . . . . 5  |-  ( ( x  e.  ~P U. A  /\  y  e.  ~P U. A )  ->  (
x  i^i  y )  e.  ~P U. A )
1413rgen2a 2884 . . . 4  |-  A. x  e.  ~P  U. A A. y  e.  ~P  U. A
( x  i^i  y
)  e.  ~P U. A
15 inficl 7874 . . . . 5  |-  ( ~P
U. A  e.  _V  ->  ( A. x  e. 
~P  U. A A. y  e.  ~P  U. A ( x  i^i  y )  e.  ~P U. A  <->  ( fi `  ~P U. A )  =  ~P U. A ) )
163, 15syl 16 . . . 4  |-  ( A  e.  _V  ->  ( A. x  e.  ~P  U. A A. y  e. 
~P  U. A ( x  i^i  y )  e. 
~P U. A  <->  ( fi `  ~P U. A )  =  ~P U. A
) )
1714, 16mpbii 211 . . 3  |-  ( A  e.  _V  ->  ( fi `  ~P U. A
)  =  ~P U. A )
186, 17sseqtrd 3533 . 2  |-  ( A  e.  _V  ->  ( fi `  A )  C_  ~P U. A )
19 fvprc 5851 . . 3  |-  ( -.  A  e.  _V  ->  ( fi `  A )  =  (/) )
20 0ss 3807 . . 3  |-  (/)  C_  ~P U. A
2119, 20syl6eqss 3547 . 2  |-  ( -.  A  e.  _V  ->  ( fi `  A ) 
C_  ~P U. A )
2218, 21pm2.61i 164 1  |-  ( fi
`  A )  C_  ~P U. A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    = wceq 1374    e. wcel 1762   A.wral 2807   _Vcvv 3106    i^i cin 3468    C_ wss 3469   (/)c0 3778   ~Pcpw 4003   U.cuni 4238   ` cfv 5579   ficfi 7859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-en 7507  df-fin 7510  df-fi 7860
This theorem is referenced by:  fiuni  7877  ordtbas  19452
  Copyright terms: Public domain W3C validator