MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipreima Structured version   Unicode version

Theorem fipreima 7638
Description: Given a finite subset  A of the range of a function, there exists a finite subset of the domain whose image is  A. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
fipreima  |-  ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  ->  E. c  e.  ( ~P B  i^i  Fin ) ( F "
c )  =  A )
Distinct variable groups:    A, c    B, c    F, c

Proof of Theorem fipreima
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 990 . . 3  |-  ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  ->  A  e.  Fin )
2 dfss3 3367 . . . . . 6  |-  ( A 
C_  ran  F  <->  A. x  e.  A  x  e.  ran  F )
3 fvelrnb 5760 . . . . . . 7  |-  ( F  Fn  B  ->  (
x  e.  ran  F  <->  E. y  e.  B  ( F `  y )  =  x ) )
43ralbidv 2756 . . . . . 6  |-  ( F  Fn  B  ->  ( A. x  e.  A  x  e.  ran  F  <->  A. x  e.  A  E. y  e.  B  ( F `  y )  =  x ) )
52, 4syl5bb 257 . . . . 5  |-  ( F  Fn  B  ->  ( A  C_  ran  F  <->  A. x  e.  A  E. y  e.  B  ( F `  y )  =  x ) )
65biimpa 484 . . . 4  |-  ( ( F  Fn  B  /\  A  C_  ran  F )  ->  A. x  e.  A  E. y  e.  B  ( F `  y )  =  x )
763adant3 1008 . . 3  |-  ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  ->  A. x  e.  A  E. y  e.  B  ( F `  y )  =  x )
8 fveq2 5712 . . . . 5  |-  ( y  =  ( f `  x )  ->  ( F `  y )  =  ( F `  ( f `  x
) ) )
98eqeq1d 2451 . . . 4  |-  ( y  =  ( f `  x )  ->  (
( F `  y
)  =  x  <->  ( F `  ( f `  x
) )  =  x ) )
109ac6sfi 7577 . . 3  |-  ( ( A  e.  Fin  /\  A. x  e.  A  E. y  e.  B  ( F `  y )  =  x )  ->  E. f
( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x
) )  =  x ) )
111, 7, 10syl2anc 661 . 2  |-  ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  ->  E. f ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `
 x ) )  =  x ) )
12 imassrn 5201 . . . . . . 7  |-  ( f
" A )  C_  ran  f
13 frn 5586 . . . . . . 7  |-  ( f : A --> B  ->  ran  f  C_  B )
1412, 13syl5ss 3388 . . . . . 6  |-  ( f : A --> B  -> 
( f " A
)  C_  B )
15 vex 2996 . . . . . . . 8  |-  f  e. 
_V
16 imaexg 6536 . . . . . . . 8  |-  ( f  e.  _V  ->  (
f " A )  e.  _V )
1715, 16ax-mp 5 . . . . . . 7  |-  ( f
" A )  e. 
_V
1817elpw 3887 . . . . . 6  |-  ( ( f " A )  e.  ~P B  <->  ( f " A )  C_  B
)
1914, 18sylibr 212 . . . . 5  |-  ( f : A --> B  -> 
( f " A
)  e.  ~P B
)
2019ad2antrl 727 . . . 4  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
( f " A
)  e.  ~P B
)
21 ffun 5582 . . . . . 6  |-  ( f : A --> B  ->  Fun  f )
2221ad2antrl 727 . . . . 5  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  ->  Fun  f )
23 simpl3 993 . . . . 5  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  ->  A  e.  Fin )
24 imafi 7625 . . . . 5  |-  ( ( Fun  f  /\  A  e.  Fin )  ->  (
f " A )  e.  Fin )
2522, 23, 24syl2anc 661 . . . 4  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
( f " A
)  e.  Fin )
2620, 25elind 3561 . . 3  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
( f " A
)  e.  ( ~P B  i^i  Fin )
)
27 fvco3 5789 . . . . . . . . . . 11  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( ( F  o.  f ) `  x
)  =  ( F `
 ( f `  x ) ) )
28 fvresi 5925 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
2928adantl 466 . . . . . . . . . . 11  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( (  _I  |`  A ) `
 x )  =  x )
3027, 29eqeq12d 2457 . . . . . . . . . 10  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( ( ( F  o.  f ) `  x )  =  ( (  _I  |`  A ) `
 x )  <->  ( F `  ( f `  x
) )  =  x ) )
3130ralbidva 2752 . . . . . . . . 9  |-  ( f : A --> B  -> 
( A. x  e.  A  ( ( F  o.  f ) `  x )  =  ( (  _I  |`  A ) `
 x )  <->  A. x  e.  A  ( F `  ( f `  x
) )  =  x ) )
3231biimprd 223 . . . . . . . 8  |-  ( f : A --> B  -> 
( A. x  e.  A  ( F `  ( f `  x
) )  =  x  ->  A. x  e.  A  ( ( F  o.  f ) `  x
)  =  ( (  _I  |`  A ) `  x ) ) )
3332adantl 466 . . . . . . 7  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  f : A --> B )  ->  ( A. x  e.  A  ( F `  ( f `
 x ) )  =  x  ->  A. x  e.  A  ( ( F  o.  f ) `  x )  =  ( (  _I  |`  A ) `
 x ) ) )
3433impr 619 . . . . . 6  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  ->  A. x  e.  A  ( ( F  o.  f ) `  x
)  =  ( (  _I  |`  A ) `  x ) )
35 simpl1 991 . . . . . . . 8  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  ->  F  Fn  B )
36 ffn 5580 . . . . . . . . 9  |-  ( f : A --> B  -> 
f  Fn  A )
3736ad2antrl 727 . . . . . . . 8  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
f  Fn  A )
3813ad2antrl 727 . . . . . . . 8  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  ->  ran  f  C_  B )
39 fnco 5540 . . . . . . . 8  |-  ( ( F  Fn  B  /\  f  Fn  A  /\  ran  f  C_  B )  ->  ( F  o.  f )  Fn  A
)
4035, 37, 38, 39syl3anc 1218 . . . . . . 7  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
( F  o.  f
)  Fn  A )
41 fnresi 5549 . . . . . . 7  |-  (  _I  |`  A )  Fn  A
42 eqfnfv 5818 . . . . . . 7  |-  ( ( ( F  o.  f
)  Fn  A  /\  (  _I  |`  A )  Fn  A )  -> 
( ( F  o.  f )  =  (  _I  |`  A )  <->  A. x  e.  A  ( ( F  o.  f
) `  x )  =  ( (  _I  |`  A ) `  x
) ) )
4340, 41, 42sylancl 662 . . . . . 6  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
( ( F  o.  f )  =  (  _I  |`  A )  <->  A. x  e.  A  ( ( F  o.  f
) `  x )  =  ( (  _I  |`  A ) `  x
) ) )
4434, 43mpbird 232 . . . . 5  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
( F  o.  f
)  =  (  _I  |`  A ) )
4544imaeq1d 5189 . . . 4  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
( ( F  o.  f ) " A
)  =  ( (  _I  |`  A ) " A ) )
46 imaco 5364 . . . 4  |-  ( ( F  o.  f )
" A )  =  ( F " (
f " A ) )
47 ssid 3396 . . . . 5  |-  A  C_  A
48 resiima 5204 . . . . 5  |-  ( A 
C_  A  ->  (
(  _I  |`  A )
" A )  =  A )
4947, 48ax-mp 5 . . . 4  |-  ( (  _I  |`  A ) " A )  =  A
5045, 46, 493eqtr3g 2498 . . 3  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  -> 
( F " (
f " A ) )  =  A )
51 imaeq2 5186 . . . . 5  |-  ( c  =  ( f " A )  ->  ( F " c )  =  ( F " (
f " A ) ) )
5251eqeq1d 2451 . . . 4  |-  ( c  =  ( f " A )  ->  (
( F " c
)  =  A  <->  ( F " ( f " A
) )  =  A ) )
5352rspcev 3094 . . 3  |-  ( ( ( f " A
)  e.  ( ~P B  i^i  Fin )  /\  ( F " (
f " A ) )  =  A )  ->  E. c  e.  ( ~P B  i^i  Fin ) ( F "
c )  =  A )
5426, 50, 53syl2anc 661 . 2  |-  ( ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  /\  ( f : A --> B  /\  A. x  e.  A  ( F `  ( f `  x ) )  =  x ) )  ->  E. c  e.  ( ~P B  i^i  Fin )
( F " c
)  =  A )
5511, 54exlimddv 1692 1  |-  ( ( F  Fn  B  /\  A  C_  ran  F  /\  A  e.  Fin )  ->  E. c  e.  ( ~P B  i^i  Fin ) ( F "
c )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2736   E.wrex 2737   _Vcvv 2993    i^i cin 3348    C_ wss 3349   ~Pcpw 3881    _I cid 4652   ran crn 4862    |` cres 4863   "cima 4864    o. ccom 4865   Fun wfun 5433    Fn wfn 5434   -->wf 5435   ` cfv 5439   Fincfn 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-om 6498  df-1o 6941  df-er 7122  df-en 7332  df-dom 7333  df-fin 7335
This theorem is referenced by:  fodomfi2  8251  cmpfi  19033  elrfirn  29057  lmhmfgsplit  29465  hbtlem6  29511
  Copyright terms: Public domain W3C validator