MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsschain Structured version   Visualization version   Unicode version

Theorem finsschain 7912
Description: A finite subset of the union of a superset chain is a subset of some element of the chain. A useful preliminary result for alexsub 21115 and others. (Contributed by Jeff Hankins, 25-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
finsschain  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( B  e.  Fin  /\  B  C_  U. A ) )  ->  E. z  e.  A  B  C_  z )
Distinct variable groups:    z, A    z, B

Proof of Theorem finsschain
Dummy variables  a 
b  c  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3465 . . . . . 6  |-  ( a  =  (/)  ->  ( a 
C_  U. A  <->  (/)  C_  U. A
) )
2 sseq1 3465 . . . . . . 7  |-  ( a  =  (/)  ->  ( a 
C_  z  <->  (/)  C_  z
) )
32rexbidv 2913 . . . . . 6  |-  ( a  =  (/)  ->  ( E. z  e.  A  a 
C_  z  <->  E. z  e.  A  (/)  C_  z
) )
41, 3imbi12d 326 . . . . 5  |-  ( a  =  (/)  ->  ( ( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z ) ) )
54imbi2d 322 . . . 4  |-  ( a  =  (/)  ->  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z ) ) ) )
6 sseq1 3465 . . . . . 6  |-  ( a  =  b  ->  (
a  C_  U. A  <->  b  C_  U. A ) )
7 sseq1 3465 . . . . . . 7  |-  ( a  =  b  ->  (
a  C_  z  <->  b  C_  z ) )
87rexbidv 2913 . . . . . 6  |-  ( a  =  b  ->  ( E. z  e.  A  a  C_  z  <->  E. z  e.  A  b  C_  z ) )
96, 8imbi12d 326 . . . . 5  |-  ( a  =  b  ->  (
( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) ) )
109imbi2d 322 . . . 4  |-  ( a  =  b  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) ) ) )
11 sseq1 3465 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  U. A  <->  ( b  u. 
{ c } ) 
C_  U. A ) )
12 sseq1 3465 . . . . . . 7  |-  ( a  =  ( b  u. 
{ c } )  ->  ( a  C_  z 
<->  ( b  u.  {
c } )  C_  z ) )
1312rexbidv 2913 . . . . . 6  |-  ( a  =  ( b  u. 
{ c } )  ->  ( E. z  e.  A  a  C_  z 
<->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
1411, 13imbi12d 326 . . . . 5  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( a 
C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) )
1514imbi2d 322 . . . 4  |-  ( a  =  ( b  u. 
{ c } )  ->  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) ) )
16 sseq1 3465 . . . . . 6  |-  ( a  =  B  ->  (
a  C_  U. A  <->  B  C_  U. A
) )
17 sseq1 3465 . . . . . . 7  |-  ( a  =  B  ->  (
a  C_  z  <->  B  C_  z
) )
1817rexbidv 2913 . . . . . 6  |-  ( a  =  B  ->  ( E. z  e.  A  a  C_  z  <->  E. z  e.  A  B  C_  z
) )
1916, 18imbi12d 326 . . . . 5  |-  ( a  =  B  ->  (
( a  C_  U. A  ->  E. z  e.  A  a  C_  z )  <->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) )
2019imbi2d 322 . . . 4  |-  ( a  =  B  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( a  C_ 
U. A  ->  E. z  e.  A  a  C_  z ) )  <->  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) ) )
21 0ss 3775 . . . . . . . 8  |-  (/)  C_  z
2221rgenw 2761 . . . . . . 7  |-  A. z  e.  A  (/)  C_  z
23 r19.2z 3870 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A. z  e.  A  (/)  C_  z
)  ->  E. z  e.  A  (/)  C_  z
)
2422, 23mpan2 682 . . . . . 6  |-  ( A  =/=  (/)  ->  E. z  e.  A  (/)  C_  z
)
2524adantr 471 . . . . 5  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  E. z  e.  A  (/)  C_  z
)
2625a1d 26 . . . 4  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (/)  C_  U. A  ->  E. z  e.  A  (/)  C_  z ) )
27 id 22 . . . . . . . . 9  |-  ( ( b  u.  { c } )  C_  U. A  ->  ( b  u.  {
c } )  C_  U. A )
2827unssad 3623 . . . . . . . 8  |-  ( ( b  u.  { c } )  C_  U. A  ->  b  C_  U. A )
2928imim1i 60 . . . . . . 7  |-  ( ( b  C_  U. A  ->  E. z  e.  A  b  C_  z )  -> 
( ( b  u. 
{ c } ) 
C_  U. A  ->  E. z  e.  A  b  C_  z ) )
30 sseq2 3466 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
b  C_  z  <->  b  C_  w ) )
3130cbvrexv 3032 . . . . . . . . . 10  |-  ( E. z  e.  A  b 
C_  z  <->  E. w  e.  A  b  C_  w )
32 simpr 467 . . . . . . . . . . . . . 14  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( b  u.  {
c } )  C_  U. A )
3332unssbd 3624 . . . . . . . . . . . . 13  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  ->  { c }  C_  U. A )
34 vex 3060 . . . . . . . . . . . . . 14  |-  c  e. 
_V
3534snss 4109 . . . . . . . . . . . . 13  |-  ( c  e.  U. A  <->  { c }  C_  U. A )
3633, 35sylibr 217 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
c  e.  U. A
)
37 eluni2 4216 . . . . . . . . . . . 12  |-  ( c  e.  U. A  <->  E. u  e.  A  c  e.  u )
3836, 37sylib 201 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  ->  E. u  e.  A  c  e.  u )
39 reeanv 2970 . . . . . . . . . . . 12  |-  ( E. u  e.  A  E. w  e.  A  (
c  e.  u  /\  b  C_  w )  <->  ( E. u  e.  A  c  e.  u  /\  E. w  e.  A  b  C_  w ) )
40 simpllr 774 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  -> [ C.]  Or  A
)
41 simprlr 778 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  w  e.  A )
42 simprll 777 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  u  e.  A )
43 sorpssun 6610 . . . . . . . . . . . . . . . 16  |-  ( ( [ C.]  Or  A  /\  (
w  e.  A  /\  u  e.  A )
)  ->  ( w  u.  u )  e.  A
)
4440, 41, 42, 43syl12anc 1274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  ( w  u.  u )  e.  A
)
45 simprrr 780 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  b  C_  w )
46 simprrl 779 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  c  e.  u )
4746snssd 4130 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  { c }  C_  u )
48 unss12 3618 . . . . . . . . . . . . . . . 16  |-  ( ( b  C_  w  /\  { c }  C_  u
)  ->  ( b  u.  { c } ) 
C_  ( w  u.  u ) )
4945, 47, 48syl2anc 671 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  ( b  u.  { c } ) 
C_  ( w  u.  u ) )
50 sseq2 3466 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( w  u.  u )  ->  (
( b  u.  {
c } )  C_  z 
<->  ( b  u.  {
c } )  C_  ( w  u.  u
) ) )
5150rspcev 3162 . . . . . . . . . . . . . . 15  |-  ( ( ( w  u.  u
)  e.  A  /\  ( b  u.  {
c } )  C_  ( w  u.  u
) )  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z )
5244, 49, 51syl2anc 671 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( ( u  e.  A  /\  w  e.  A )  /\  (
c  e.  u  /\  b  C_  w ) ) )  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z )
5352expr 624 . . . . . . . . . . . . 13  |-  ( ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  /\  ( u  e.  A  /\  w  e.  A
) )  ->  (
( c  e.  u  /\  b  C_  w )  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5453rexlimdvva 2898 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( E. u  e.  A  E. w  e.  A  ( c  e.  u  /\  b  C_  w )  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) )
5539, 54syl5bir 226 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( ( E. u  e.  A  c  e.  u  /\  E. w  e.  A  b  C_  w
)  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) )
5638, 55mpand 686 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( E. w  e.  A  b  C_  w  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5731, 56syl5bi 225 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( b  u.  { c } ) 
C_  U. A )  -> 
( E. z  e.  A  b  C_  z  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) )
5857ex 440 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  ( E. z  e.  A  b  C_  z  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) )
5958a2d 29 . . . . . . 7  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
( b  u.  {
c } )  C_  U. A  ->  E. z  e.  A  b  C_  z )  ->  (
( b  u.  {
c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) ) )
6029, 59syl5 33 . . . . . 6  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  C_  U. A  ->  E. z  e.  A  b  C_  z )  -> 
( ( b  u. 
{ c } ) 
C_  U. A  ->  E. z  e.  A  ( b  u.  { c } ) 
C_  z ) ) )
6160a2i 14 . . . . 5  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) )  -> 
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) )
6261a1i 11 . . . 4  |-  ( b  e.  Fin  ->  (
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( b  C_ 
U. A  ->  E. z  e.  A  b  C_  z ) )  -> 
( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( (
b  u.  { c } )  C_  U. A  ->  E. z  e.  A  ( b  u.  {
c } )  C_  z ) ) ) )
635, 10, 15, 20, 26, 62findcard2 7842 . . 3  |-  ( B  e.  Fin  ->  (
( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) )
6463com12 32 . 2  |-  ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  ->  ( B  e.  Fin  ->  ( B  C_ 
U. A  ->  E. z  e.  A  B  C_  z
) ) )
6564imp32 439 1  |-  ( ( ( A  =/=  (/)  /\ [ C.]  Or  A
)  /\  ( B  e.  Fin  /\  B  C_  U. A ) )  ->  E. z  e.  A  B  C_  z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   E.wrex 2750    u. cun 3414    C_ wss 3416   (/)c0 3743   {csn 3980   U.cuni 4212    Or wor 4776   [ C.] crpss 6602   Fincfn 7600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-br 4419  df-opab 4478  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-rpss 6603  df-om 6725  df-1o 7213  df-er 7394  df-en 7601  df-fin 7604
This theorem is referenced by:  alexsubALTlem2  21118
  Copyright terms: Public domain W3C validator