MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finiunmbl Structured version   Unicode version

Theorem finiunmbl 22244
Description: A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014.)
Assertion
Ref Expression
finiunmbl  |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  dom  vol )  ->  U_ k  e.  A  B  e.  dom  vol )
Distinct variable group:    A, k
Allowed substitution hint:    B( k)

Proof of Theorem finiunmbl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3003 . . . 4  |-  ( y  =  (/)  ->  ( A. k  e.  y  B  e.  dom  vol  <->  A. k  e.  (/)  B  e.  dom  vol )
)
2 iuneq1 4284 . . . . 5  |-  ( y  =  (/)  ->  U_ k  e.  y  B  =  U_ k  e.  (/)  B )
32eleq1d 2471 . . . 4  |-  ( y  =  (/)  ->  ( U_ k  e.  y  B  e.  dom  vol  <->  U_ k  e.  (/)  B  e.  dom  vol )
)
41, 3imbi12d 318 . . 3  |-  ( y  =  (/)  ->  ( ( A. k  e.  y  B  e.  dom  vol  ->  U_ k  e.  y  B  e.  dom  vol ) 
<->  ( A. k  e.  (/)  B  e.  dom  vol  ->  U_ k  e.  (/)  B  e.  dom  vol )
) )
5 raleq 3003 . . . 4  |-  ( y  =  x  ->  ( A. k  e.  y  B  e.  dom  vol  <->  A. k  e.  x  B  e.  dom  vol ) )
6 iuneq1 4284 . . . . 5  |-  ( y  =  x  ->  U_ k  e.  y  B  =  U_ k  e.  x  B )
76eleq1d 2471 . . . 4  |-  ( y  =  x  ->  ( U_ k  e.  y  B  e.  dom  vol  <->  U_ k  e.  x  B  e.  dom  vol ) )
85, 7imbi12d 318 . . 3  |-  ( y  =  x  ->  (
( A. k  e.  y  B  e.  dom  vol 
->  U_ k  e.  y  B  e.  dom  vol ) 
<->  ( A. k  e.  x  B  e.  dom  vol 
->  U_ k  e.  x  B  e.  dom  vol )
) )
9 raleq 3003 . . . 4  |-  ( y  =  ( x  u. 
{ z } )  ->  ( A. k  e.  y  B  e.  dom  vol  <->  A. k  e.  ( x  u.  { z } ) B  e. 
dom  vol ) )
10 iuneq1 4284 . . . . 5  |-  ( y  =  ( x  u. 
{ z } )  ->  U_ k  e.  y  B  =  U_ k  e.  ( x  u.  {
z } ) B )
1110eleq1d 2471 . . . 4  |-  ( y  =  ( x  u. 
{ z } )  ->  ( U_ k  e.  y  B  e.  dom  vol  <->  U_ k  e.  ( x  u.  { z } ) B  e. 
dom  vol ) )
129, 11imbi12d 318 . . 3  |-  ( y  =  ( x  u. 
{ z } )  ->  ( ( A. k  e.  y  B  e.  dom  vol  ->  U_ k  e.  y  B  e.  dom  vol )  <->  ( A. k  e.  ( x  u.  { z } ) B  e.  dom  vol  ->  U_ k  e.  ( x  u.  { z } ) B  e. 
dom  vol ) ) )
13 raleq 3003 . . . 4  |-  ( y  =  A  ->  ( A. k  e.  y  B  e.  dom  vol  <->  A. k  e.  A  B  e.  dom  vol ) )
14 iuneq1 4284 . . . . 5  |-  ( y  =  A  ->  U_ k  e.  y  B  =  U_ k  e.  A  B
)
1514eleq1d 2471 . . . 4  |-  ( y  =  A  ->  ( U_ k  e.  y  B  e.  dom  vol  <->  U_ k  e.  A  B  e.  dom  vol ) )
1613, 15imbi12d 318 . . 3  |-  ( y  =  A  ->  (
( A. k  e.  y  B  e.  dom  vol 
->  U_ k  e.  y  B  e.  dom  vol ) 
<->  ( A. k  e.  A  B  e.  dom  vol 
->  U_ k  e.  A  B  e.  dom  vol )
) )
17 0iun 4327 . . . . 5  |-  U_ k  e.  (/)  B  =  (/)
18 0mbl 22240 . . . . 5  |-  (/)  e.  dom  vol
1917, 18eqeltri 2486 . . . 4  |-  U_ k  e.  (/)  B  e.  dom  vol
2019a1i 11 . . 3  |-  ( A. k  e.  (/)  B  e. 
dom  vol  ->  U_ k  e.  (/)  B  e.  dom  vol )
21 ssun1 3605 . . . . . . 7  |-  x  C_  ( x  u.  { z } )
22 ssralv 3502 . . . . . . 7  |-  ( x 
C_  ( x  u. 
{ z } )  ->  ( A. k  e.  ( x  u.  {
z } ) B  e.  dom  vol  ->  A. k  e.  x  B  e.  dom  vol )
)
2321, 22ax-mp 5 . . . . . 6  |-  ( A. k  e.  ( x  u.  { z } ) B  e.  dom  vol  ->  A. k  e.  x  B  e.  dom  vol )
2423imim1i 57 . . . . 5  |-  ( ( A. k  e.  x  B  e.  dom  vol  ->  U_ k  e.  x  B  e.  dom  vol )  ->  ( A. k  e.  ( x  u.  {
z } ) B  e.  dom  vol  ->  U_ k  e.  x  B  e.  dom  vol )
)
25 ssun2 3606 . . . . . . 7  |-  { z }  C_  ( x  u.  { z } )
26 ssralv 3502 . . . . . . 7  |-  ( { z }  C_  (
x  u.  { z } )  ->  ( A. k  e.  (
x  u.  { z } ) B  e. 
dom  vol  ->  A. k  e.  { z } B  e.  dom  vol ) )
2725, 26ax-mp 5 . . . . . 6  |-  ( A. k  e.  ( x  u.  { z } ) B  e.  dom  vol  ->  A. k  e.  {
z } B  e. 
dom  vol )
28 iunxun 4355 . . . . . . . 8  |-  U_ k  e.  ( x  u.  {
z } ) B  =  ( U_ k  e.  x  B  u.  U_ k  e.  { z } B )
29 vex 3061 . . . . . . . . . . 11  |-  z  e. 
_V
30 csbeq1 3375 . . . . . . . . . . . 12  |-  ( x  =  z  ->  [_ x  /  k ]_ B  =  [_ z  /  k ]_ B )
3130eleq1d 2471 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( [_ x  /  k ]_ B  e.  dom  vol  <->  [_ z  /  k ]_ B  e.  dom  vol )
)
3229, 31ralsn 4010 . . . . . . . . . 10  |-  ( A. x  e.  { z } [_ x  /  k ]_ B  e.  dom  vol  <->  [_ z  /  k ]_ B  e.  dom  vol )
33 nfv 1728 . . . . . . . . . . 11  |-  F/ x  B  e.  dom  vol
34 nfcsb1v 3388 . . . . . . . . . . . 12  |-  F/_ k [_ x  /  k ]_ B
3534nfel1 2580 . . . . . . . . . . 11  |-  F/ k
[_ x  /  k ]_ B  e.  dom  vol
36 csbeq1a 3381 . . . . . . . . . . . 12  |-  ( k  =  x  ->  B  =  [_ x  /  k ]_ B )
3736eleq1d 2471 . . . . . . . . . . 11  |-  ( k  =  x  ->  ( B  e.  dom  vol  <->  [_ x  / 
k ]_ B  e.  dom  vol ) )
3833, 35, 37cbvral 3029 . . . . . . . . . 10  |-  ( A. k  e.  { z } B  e.  dom  vol  <->  A. x  e.  { z } [_ x  / 
k ]_ B  e.  dom  vol )
39 nfcv 2564 . . . . . . . . . . . . 13  |-  F/_ x B
4039, 34, 36cbviun 4307 . . . . . . . . . . . 12  |-  U_ k  e.  { z } B  =  U_ x  e.  {
z } [_ x  /  k ]_ B
4129, 30iunxsn 4353 . . . . . . . . . . . 12  |-  U_ x  e.  { z } [_ x  /  k ]_ B  =  [_ z  /  k ]_ B
4240, 41eqtri 2431 . . . . . . . . . . 11  |-  U_ k  e.  { z } B  =  [_ z  /  k ]_ B
4342eleq1i 2479 . . . . . . . . . 10  |-  ( U_ k  e.  { z } B  e.  dom  vol  <->  [_ z  /  k ]_ B  e.  dom  vol )
4432, 38, 433bitr4i 277 . . . . . . . . 9  |-  ( A. k  e.  { z } B  e.  dom  vol  <->  U_ k  e.  { z } B  e.  dom  vol )
45 unmbl 22238 . . . . . . . . 9  |-  ( (
U_ k  e.  x  B  e.  dom  vol  /\  U_ k  e.  { z } B  e.  dom  vol )  ->  ( U_ k  e.  x  B  u.  U_ k  e.  {
z } B )  e.  dom  vol )
4644, 45sylan2b 473 . . . . . . . 8  |-  ( (
U_ k  e.  x  B  e.  dom  vol  /\  A. k  e.  { z } B  e.  dom  vol )  ->  ( U_ k  e.  x  B  u.  U_ k  e.  {
z } B )  e.  dom  vol )
4728, 46syl5eqel 2494 . . . . . . 7  |-  ( (
U_ k  e.  x  B  e.  dom  vol  /\  A. k  e.  { z } B  e.  dom  vol )  ->  U_ k  e.  ( x  u.  {
z } ) B  e.  dom  vol )
4847expcom 433 . . . . . 6  |-  ( A. k  e.  { z } B  e.  dom  vol 
->  ( U_ k  e.  x  B  e.  dom  vol 
->  U_ k  e.  ( x  u.  { z } ) B  e. 
dom  vol ) )
4927, 48syl 17 . . . . 5  |-  ( A. k  e.  ( x  u.  { z } ) B  e.  dom  vol  ->  ( U_ k  e.  x  B  e.  dom  vol 
->  U_ k  e.  ( x  u.  { z } ) B  e. 
dom  vol ) )
5024, 49sylcom 27 . . . 4  |-  ( ( A. k  e.  x  B  e.  dom  vol  ->  U_ k  e.  x  B  e.  dom  vol )  ->  ( A. k  e.  ( x  u.  {
z } ) B  e.  dom  vol  ->  U_ k  e.  ( x  u.  { z } ) B  e.  dom  vol ) )
5150a1i 11 . . 3  |-  ( x  e.  Fin  ->  (
( A. k  e.  x  B  e.  dom  vol 
->  U_ k  e.  x  B  e.  dom  vol )  ->  ( A. k  e.  ( x  u.  {
z } ) B  e.  dom  vol  ->  U_ k  e.  ( x  u.  { z } ) B  e.  dom  vol ) ) )
524, 8, 12, 16, 20, 51findcard2 7793 . 2  |-  ( A  e.  Fin  ->  ( A. k  e.  A  B  e.  dom  vol  ->  U_ k  e.  A  B  e.  dom  vol ) )
5352imp 427 1  |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  dom  vol )  ->  U_ k  e.  A  B  e.  dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   [_csb 3372    u. cun 3411    C_ wss 3413   (/)c0 3737   {csn 3971   U_ciun 4270   dom cdm 4822   Fincfn 7553   volcvol 22165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-inf2 8090  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-2o 7167  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-sup 7934  df-oi 7968  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-q 11227  df-rp 11265  df-xadd 11371  df-ioo 11585  df-ico 11587  df-icc 11588  df-fz 11725  df-fzo 11853  df-fl 11964  df-seq 12150  df-exp 12209  df-hash 12451  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-clim 13458  df-sum 13656  df-xmet 18730  df-met 18731  df-ovol 22166  df-vol 22167
This theorem is referenced by:  volfiniun  22247  iunmbl  22253  volsup  22256  iunmbl2  22257  uniioovol  22278  uniioombllem4  22285  uniioombllem5  22286  dyadmbl  22299  i1fima  22375  i1fd  22378  i1fadd  22392  i1fmul  22393  volfiniune  28665  volsupnfl  31411  itg2addnclem2  31420  ftc1anclem6  31448
  Copyright terms: Public domain W3C validator