MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fingch Structured version   Unicode version

Theorem fingch 9013
Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
fingch  |-  Fin  C_ GCH

Proof of Theorem fingch
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 3672 . 2  |-  Fin  C_  ( Fin  u.  { x  | 
A. y  -.  (
x  ~<  y  /\  y  ~<  ~P x ) } )
2 df-gch 9011 . 2  |- GCH  =  ( Fin  u.  { x  |  A. y  -.  (
x  ~<  y  /\  y  ~<  ~P x ) } )
31, 2sseqtr4i 3542 1  |-  Fin  C_ GCH
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369   A.wal 1377   {cab 2452    u. cun 3479    C_ wss 3481   ~Pcpw 4016   class class class wbr 4453    ~< csdm 7527   Fincfn 7528  GCHcgch 9010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-v 3120  df-un 3486  df-in 3488  df-ss 3495  df-gch 9011
This theorem is referenced by:  gch2  9065
  Copyright terms: Public domain W3C validator