Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds2 Structured version   Unicode version

Theorem finds2 6735
 Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1
finds2.2
finds2.3
finds2.4
finds2.5
Assertion
Ref Expression
finds2
Distinct variable groups:   ,,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5
2 0ex 4556 . . . . . 6
3 finds2.1 . . . . . . 7
43imbi2d 317 . . . . . 6
52, 4elab 3217 . . . . 5
61, 5mpbir 212 . . . 4
7 finds2.5 . . . . . . 7
87a2d 29 . . . . . 6
9 vex 3083 . . . . . . 7
10 finds2.2 . . . . . . . 8
1110imbi2d 317 . . . . . . 7
129, 11elab 3217 . . . . . 6
139sucex 6652 . . . . . . 7
14 finds2.3 . . . . . . . 8
1514imbi2d 317 . . . . . . 7
1613, 15elab 3217 . . . . . 6
178, 12, 163imtr4g 273 . . . . 5
1817rgen 2781 . . . 4
19 peano5 6730 . . . 4
206, 18, 19mp2an 676 . . 3
2120sseli 3460 . 2
22 abid 2409 . 2
2321, 22sylib 199 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wceq 1437   wcel 1872  cab 2407  wral 2771   wss 3436  c0 3761   csuc 5444  com 6706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pr 4660  ax-un 6597 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-tr 4519  df-eprel 4764  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-om 6707 This theorem is referenced by:  finds1  6736  onnseq  7074  nnacl  7323  nnmcl  7324  nnecl  7325  nnacom  7329  nnaass  7334  nndi  7335  nnmass  7336  nnmsucr  7337  nnmcom  7338  nnmordi  7343  omsmolem  7365  isinf  7794  unblem2  7833  fiint  7857  dffi3  7954  card2inf  8079  cantnfle  8184  cantnflt  8185  cantnflem1  8202  cnfcom  8213  trcl  8220  fseqenlem1  8462  infpssrlem3  8742  fin23lem26  8762  axdc3lem2  8888  axdc4lem  8892  axdclem2  8957  wunr1om  9151  wuncval2  9179  tskr1om  9199  grothomex  9261  peano5nni  10619  neibastop2lem  31021  finxpreclem6  31752
 Copyright terms: Public domain W3C validator