MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds1 Structured version   Unicode version

Theorem finds1 6724
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds1.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds1.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds1.4  |-  ps
finds1.5  |-  ( y  e.  om  ->  ( ch  ->  th ) )
Assertion
Ref Expression
finds1  |-  ( x  e.  om  ->  ph )
Distinct variable groups:    x, y    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2467 . 2  |-  (/)  =  (/)
2 finds1.1 . . 3  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
3 finds1.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
4 finds1.3 . . 3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
5 finds1.4 . . . 4  |-  ps
65a1i 11 . . 3  |-  ( (/)  =  (/)  ->  ps )
7 finds1.5 . . . 4  |-  ( y  e.  om  ->  ( ch  ->  th ) )
87a1d 25 . . 3  |-  ( y  e.  om  ->  ( (/)  =  (/)  ->  ( ch 
->  th ) ) )
92, 3, 4, 6, 8finds2 6723 . 2  |-  ( x  e.  om  ->  ( (/)  =  (/)  ->  ph )
)
101, 9mpi 17 1  |-  ( x  e.  om  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1379    e. wcel 1767   (/)c0 3790   suc csuc 4886   omcom 6695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-tr 4547  df-eprel 4797  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-om 6696
This theorem is referenced by:  findcard  7771  findcard2  7772  pwfi  7827  alephfplem3  8499  pwsdompw  8596  hsmexlem4  8821
  Copyright terms: Public domain W3C validator