MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds1 Structured version   Unicode version

Theorem finds1 6618
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.)
Hypotheses
Ref Expression
finds1.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
finds1.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
finds1.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
finds1.4  |-  ps
finds1.5  |-  ( y  e.  om  ->  ( ch  ->  th ) )
Assertion
Ref Expression
finds1  |-  ( x  e.  om  ->  ph )
Distinct variable groups:    x, y    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem finds1
StepHypRef Expression
1 eqid 2454 . 2  |-  (/)  =  (/)
2 finds1.1 . . 3  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
3 finds1.2 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
4 finds1.3 . . 3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
5 finds1.4 . . . 4  |-  ps
65a1i 11 . . 3  |-  ( (/)  =  (/)  ->  ps )
7 finds1.5 . . . 4  |-  ( y  e.  om  ->  ( ch  ->  th ) )
87a1d 25 . . 3  |-  ( y  e.  om  ->  ( (/)  =  (/)  ->  ( ch 
->  th ) ) )
92, 3, 4, 6, 8finds2 6617 . 2  |-  ( x  e.  om  ->  ( (/)  =  (/)  ->  ph )
)
101, 9mpi 17 1  |-  ( x  e.  om  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1370    e. wcel 1758   (/)c0 3748   suc csuc 4832   omcom 6589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-tr 4497  df-eprel 4743  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-om 6590
This theorem is referenced by:  findcard  7665  findcard2  7666  pwfi  7720  alephfplem3  8390  pwsdompw  8487  hsmexlem4  8712
  Copyright terms: Public domain W3C validator