MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findes Structured version   Unicode version

Theorem findes 6629
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. See tfindes 6596 for the transfinite version. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.)
Hypotheses
Ref Expression
findes.1  |-  [. (/)  /  x ]. ph
findes.2  |-  ( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph ) )
Assertion
Ref Expression
findes  |-  ( x  e.  om  ->  ph )

Proof of Theorem findes
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3255 . 2  |-  ( z  =  (/)  ->  ( [ z  /  x ] ph 
<-> 
[. (/)  /  x ]. ph ) )
2 sbequ 2121 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
3 dfsbcq2 3255 . 2  |-  ( z  =  suc  y  -> 
( [ z  /  x ] ph  <->  [. suc  y  /  x ]. ph )
)
4 sbequ12r 2001 . 2  |-  ( z  =  x  ->  ( [ z  /  x ] ph  <->  ph ) )
5 findes.1 . 2  |-  [. (/)  /  x ]. ph
6 nfv 1715 . . . 4  |-  F/ x  y  e.  om
7 nfs1v 2185 . . . . 5  |-  F/ x [ y  /  x ] ph
8 nfsbc1v 3272 . . . . 5  |-  F/ x [. suc  y  /  x ]. ph
97, 8nfim 1928 . . . 4  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
106, 9nfim 1928 . . 3  |-  F/ x
( y  e.  om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)
11 eleq1 2454 . . . 4  |-  ( x  =  y  ->  (
x  e.  om  <->  y  e.  om ) )
12 sbequ12 2000 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
13 suceq 4857 . . . . . 6  |-  ( x  =  y  ->  suc  x  =  suc  y )
1413sbceq1d 3257 . . . . 5  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
1512, 14imbi12d 318 . . . 4  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
1611, 15imbi12d 318 . . 3  |-  ( x  =  y  ->  (
( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph )
)  <->  ( y  e. 
om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) ) ) )
17 findes.2 . . 3  |-  ( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph ) )
1810, 16, 17chvar 2020 . 2  |-  ( y  e.  om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)
191, 2, 3, 4, 5, 18finds 6625 1  |-  ( x  e.  om  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   [wsb 1747    e. wcel 1826   [.wsbc 3252   (/)c0 3711   suc csuc 4794   omcom 6599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-tr 4461  df-eprel 4705  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-om 6600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator