MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findes Structured version   Unicode version

Theorem findes 6501
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction hypothesis. Theorem Schema 22 of [Suppes] p. 136. See tfindes 6468 for the transfinite version. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.)
Hypotheses
Ref Expression
findes.1  |-  [. (/)  /  x ]. ph
findes.2  |-  ( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph ) )
Assertion
Ref Expression
findes  |-  ( x  e.  om  ->  ph )

Proof of Theorem findes
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3184 . 2  |-  ( z  =  (/)  ->  ( [ z  /  x ] ph 
<-> 
[. (/)  /  x ]. ph ) )
2 sbequ 2067 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
3 dfsbcq2 3184 . 2  |-  ( z  =  suc  y  -> 
( [ z  /  x ] ph  <->  [. suc  y  /  x ]. ph )
)
4 sbequ12r 1937 . 2  |-  ( z  =  x  ->  ( [ z  /  x ] ph  <->  ph ) )
5 findes.1 . 2  |-  [. (/)  /  x ]. ph
6 nfv 1673 . . . 4  |-  F/ x  y  e.  om
7 nfs1v 2142 . . . . 5  |-  F/ x [ y  /  x ] ph
8 nfsbc1v 3201 . . . . 5  |-  F/ x [. suc  y  /  x ]. ph
97, 8nfim 1852 . . . 4  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
106, 9nfim 1852 . . 3  |-  F/ x
( y  e.  om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)
11 eleq1 2498 . . . 4  |-  ( x  =  y  ->  (
x  e.  om  <->  y  e.  om ) )
12 sbequ12 1936 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
13 suceq 4779 . . . . . 6  |-  ( x  =  y  ->  suc  x  =  suc  y )
14 dfsbcq 3183 . . . . . 6  |-  ( suc  x  =  suc  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph )
)
1513, 14syl 16 . . . . 5  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
1612, 15imbi12d 320 . . . 4  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
1711, 16imbi12d 320 . . 3  |-  ( x  =  y  ->  (
( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph )
)  <->  ( y  e. 
om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) ) ) )
18 findes.2 . . 3  |-  ( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph ) )
1910, 17, 18chvar 1957 . 2  |-  ( y  e.  om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)
201, 2, 3, 4, 5, 19finds 6497 1  |-  ( x  e.  om  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1369   [wsb 1700    e. wcel 1756   [.wsbc 3181   (/)c0 3632   suc csuc 4716   omcom 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-tr 4381  df-eprel 4627  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-om 6472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator