MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findes Structured version   Unicode version

Theorem findes 6715
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. See tfindes 6682 for the transfinite version. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.)
Hypotheses
Ref Expression
findes.1  |-  [. (/)  /  x ]. ph
findes.2  |-  ( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph ) )
Assertion
Ref Expression
findes  |-  ( x  e.  om  ->  ph )

Proof of Theorem findes
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3316 . 2  |-  ( z  =  (/)  ->  ( [ z  /  x ] ph 
<-> 
[. (/)  /  x ]. ph ) )
2 sbequ 2103 . 2  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
3 dfsbcq2 3316 . 2  |-  ( z  =  suc  y  -> 
( [ z  /  x ] ph  <->  [. suc  y  /  x ]. ph )
)
4 sbequ12r 1979 . 2  |-  ( z  =  x  ->  ( [ z  /  x ] ph  <->  ph ) )
5 findes.1 . 2  |-  [. (/)  /  x ]. ph
6 nfv 1694 . . . 4  |-  F/ x  y  e.  om
7 nfs1v 2167 . . . . 5  |-  F/ x [ y  /  x ] ph
8 nfsbc1v 3333 . . . . 5  |-  F/ x [. suc  y  /  x ]. ph
97, 8nfim 1906 . . . 4  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
106, 9nfim 1906 . . 3  |-  F/ x
( y  e.  om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)
11 eleq1 2515 . . . 4  |-  ( x  =  y  ->  (
x  e.  om  <->  y  e.  om ) )
12 sbequ12 1978 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
13 suceq 4933 . . . . . 6  |-  ( x  =  y  ->  suc  x  =  suc  y )
1413sbceq1d 3318 . . . . 5  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
1512, 14imbi12d 320 . . . 4  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
1611, 15imbi12d 320 . . 3  |-  ( x  =  y  ->  (
( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph )
)  <->  ( y  e. 
om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) ) ) )
17 findes.2 . . 3  |-  ( x  e.  om  ->  ( ph  ->  [. suc  x  /  x ]. ph ) )
1810, 16, 17chvar 1999 . 2  |-  ( y  e.  om  ->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)
191, 2, 3, 4, 5, 18finds 6711 1  |-  ( x  e.  om  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   [wsb 1726    e. wcel 1804   [.wsbc 3313   (/)c0 3770   suc csuc 4870   omcom 6685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-om 6686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator