MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  find Structured version   Unicode version

Theorem find 6720
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that  A is a set of natural numbers, zero belongs to 
A, and given any member of  A the member's successor also belongs to  A. The conclusion is that every natural number is in  A. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
find.1  |-  ( A 
C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
Assertion
Ref Expression
find  |-  A  =  om
Distinct variable group:    x, A

Proof of Theorem find
StepHypRef Expression
1 find.1 . . 3  |-  ( A 
C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
21simp1i 1005 . 2  |-  A  C_  om
3 3simpc 995 . . . . 5  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
41, 3ax-mp 5 . . . 4  |-  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
5 df-ral 2822 . . . . . 6  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
6 alral 2832 . . . . . 6  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
75, 6sylbi 195 . . . . 5  |-  ( A. x  e.  A  suc  x  e.  A  ->  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )
87anim2i 569 . . . 4  |-  ( (
(/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
94, 8ax-mp 5 . . 3  |-  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
10 peano5 6718 . . 3  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
119, 10ax-mp 5 . 2  |-  om  C_  A
122, 11eqssi 3525 1  |-  A  =  om
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2817    C_ wss 3481   (/)c0 3790   suc csuc 4886   omcom 6695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-tr 4547  df-eprel 4797  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-om 6696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator