MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincmp Structured version   Unicode version

Theorem fincmp 19018
Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.)
Assertion
Ref Expression
fincmp  |-  ( J  e.  ( Top  i^i  Fin )  ->  J  e.  Comp )

Proof of Theorem fincmp
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3591 . . 3  |-  ( Top 
i^i  Fin )  C_  Top
21sseli 3373 . 2  |-  ( J  e.  ( Top  i^i  Fin )  ->  J  e.  Top )
3 inss2 3592 . . . 4  |-  ( Top 
i^i  Fin )  C_  Fin
43sseli 3373 . . 3  |-  ( J  e.  ( Top  i^i  Fin )  ->  J  e.  Fin )
5 vex 2996 . . . . . 6  |-  y  e. 
_V
65pwid 3895 . . . . 5  |-  y  e. 
~P y
7 selpw 3888 . . . . . 6  |-  ( y  e.  ~P J  <->  y  C_  J )
8 ssfi 7554 . . . . . 6  |-  ( ( J  e.  Fin  /\  y  C_  J )  -> 
y  e.  Fin )
97, 8sylan2b 475 . . . . 5  |-  ( ( J  e.  Fin  /\  y  e.  ~P J
)  ->  y  e.  Fin )
10 elin 3560 . . . . . 6  |-  ( y  e.  ( ~P y  i^i  Fin )  <->  ( y  e.  ~P y  /\  y  e.  Fin ) )
11 unieq 4120 . . . . . . . . 9  |-  ( z  =  y  ->  U. z  =  U. y )
1211eqeq2d 2454 . . . . . . . 8  |-  ( z  =  y  ->  ( U. J  =  U. z 
<-> 
U. J  =  U. y ) )
1312rspcev 3094 . . . . . . 7  |-  ( ( y  e.  ( ~P y  i^i  Fin )  /\  U. J  =  U. y )  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )
1413ex 434 . . . . . 6  |-  ( y  e.  ( ~P y  i^i  Fin )  ->  ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) )
1510, 14sylbir 213 . . . . 5  |-  ( ( y  e.  ~P y  /\  y  e.  Fin )  ->  ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z ) )
166, 9, 15sylancr 663 . . . 4  |-  ( ( J  e.  Fin  /\  y  e.  ~P J
)  ->  ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) )
1716ralrimiva 2820 . . 3  |-  ( J  e.  Fin  ->  A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) )
184, 17syl 16 . 2  |-  ( J  e.  ( Top  i^i  Fin )  ->  A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) )
19 eqid 2443 . . 3  |-  U. J  =  U. J
2019iscmp 19013 . 2  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) ) )
212, 18, 20sylanbrc 664 1  |-  ( J  e.  ( Top  i^i  Fin )  ->  J  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2736   E.wrex 2737    i^i cin 3348    C_ wss 3349   ~Pcpw 3881   U.cuni 4112   Fincfn 7331   Topctop 18520   Compccmp 19011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-om 6498  df-er 7122  df-en 7332  df-fin 7335  df-cmp 19012
This theorem is referenced by:  0cmp  19019  discmp  19023  1stckgenlem  19148  ptcmpfi  19408  kelac2lem  29443
  Copyright terms: Public domain W3C validator