MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin67 Structured version   Unicode version

Theorem fin67 8564
Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin67  |-  ( A  e. FinVI  ->  A  e. FinVII )

Proof of Theorem fin67
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 isfin6 8469 . 2  |-  ( A  e. FinVI  <-> 
( A  ~<  2o  \/  A  ~<  ( A  X.  A ) ) )
2 2onn 7079 . . . . . 6  |-  2o  e.  om
3 ssid 3375 . . . . . 6  |-  2o  C_  2o
4 ssnnfi 7532 . . . . . 6  |-  ( ( 2o  e.  om  /\  2o  C_  2o )  ->  2o  e.  Fin )
52, 3, 4mp2an 672 . . . . 5  |-  2o  e.  Fin
6 sdomdom 7337 . . . . 5  |-  ( A 
~<  2o  ->  A  ~<_  2o )
7 domfi 7534 . . . . 5  |-  ( ( 2o  e.  Fin  /\  A  ~<_  2o )  ->  A  e.  Fin )
85, 6, 7sylancr 663 . . . 4  |-  ( A 
~<  2o  ->  A  e.  Fin )
9 fin17 8563 . . . 4  |-  ( A  e.  Fin  ->  A  e. FinVII )
108, 9syl 16 . . 3  |-  ( A 
~<  2o  ->  A  e. FinVII )
11 sdomnen 7338 . . . . 5  |-  ( A 
~<  ( A  X.  A
)  ->  -.  A  ~~  ( A  X.  A
) )
12 eldifi 3478 . . . . . . . . 9  |-  ( b  e.  ( On  \  om )  ->  b  e.  On )
13 ensym 7358 . . . . . . . . 9  |-  ( A 
~~  b  ->  b  ~~  A )
14 isnumi 8116 . . . . . . . . 9  |-  ( ( b  e.  On  /\  b  ~~  A )  ->  A  e.  dom  card )
1512, 13, 14syl2an 477 . . . . . . . 8  |-  ( ( b  e.  ( On 
\  om )  /\  A  ~~  b )  ->  A  e.  dom  card )
16 vex 2975 . . . . . . . . . . 11  |-  b  e. 
_V
17 eldif 3338 . . . . . . . . . . . 12  |-  ( b  e.  ( On  \  om )  <->  ( b  e.  On  /\  -.  b  e.  om ) )
18 ordom 6485 . . . . . . . . . . . . . 14  |-  Ord  om
19 eloni 4729 . . . . . . . . . . . . . 14  |-  ( b  e.  On  ->  Ord  b )
20 ordtri1 4752 . . . . . . . . . . . . . 14  |-  ( ( Ord  om  /\  Ord  b )  ->  ( om  C_  b  <->  -.  b  e.  om ) )
2118, 19, 20sylancr 663 . . . . . . . . . . . . 13  |-  ( b  e.  On  ->  ( om  C_  b  <->  -.  b  e.  om ) )
2221biimpar 485 . . . . . . . . . . . 12  |-  ( ( b  e.  On  /\  -.  b  e.  om )  ->  om  C_  b )
2317, 22sylbi 195 . . . . . . . . . . 11  |-  ( b  e.  ( On  \  om )  ->  om  C_  b
)
24 ssdomg 7355 . . . . . . . . . . 11  |-  ( b  e.  _V  ->  ( om  C_  b  ->  om  ~<_  b ) )
2516, 23, 24mpsyl 63 . . . . . . . . . 10  |-  ( b  e.  ( On  \  om )  ->  om  ~<_  b )
26 domen2 7454 . . . . . . . . . 10  |-  ( A 
~~  b  ->  ( om 
~<_  A  <->  om  ~<_  b ) )
2725, 26syl5ibr 221 . . . . . . . . 9  |-  ( A 
~~  b  ->  (
b  e.  ( On 
\  om )  ->  om 
~<_  A ) )
2827impcom 430 . . . . . . . 8  |-  ( ( b  e.  ( On 
\  om )  /\  A  ~~  b )  ->  om 
~<_  A )
29 infxpidm2 8183 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
3015, 28, 29syl2anc 661 . . . . . . 7  |-  ( ( b  e.  ( On 
\  om )  /\  A  ~~  b )  -> 
( A  X.  A
)  ~~  A )
31 ensym 7358 . . . . . . 7  |-  ( ( A  X.  A ) 
~~  A  ->  A  ~~  ( A  X.  A
) )
3230, 31syl 16 . . . . . 6  |-  ( ( b  e.  ( On 
\  om )  /\  A  ~~  b )  ->  A  ~~  ( A  X.  A ) )
3332rexlimiva 2836 . . . . 5  |-  ( E. b  e.  ( On 
\  om ) A 
~~  b  ->  A  ~~  ( A  X.  A
) )
3411, 33nsyl 121 . . . 4  |-  ( A 
~<  ( A  X.  A
)  ->  -.  E. b  e.  ( On  \  om ) A  ~~  b )
35 relsdom 7317 . . . . . 6  |-  Rel  ~<
3635brrelexi 4879 . . . . 5  |-  ( A 
~<  ( A  X.  A
)  ->  A  e.  _V )
37 isfin7 8470 . . . . 5  |-  ( A  e.  _V  ->  ( A  e. FinVII 
<->  -.  E. b  e.  ( On  \  om ) A  ~~  b ) )
3836, 37syl 16 . . . 4  |-  ( A 
~<  ( A  X.  A
)  ->  ( A  e. FinVII  <->  -. 
E. b  e.  ( On  \  om ) A  ~~  b ) )
3934, 38mpbird 232 . . 3  |-  ( A 
~<  ( A  X.  A
)  ->  A  e. FinVII )
4010, 39jaoi 379 . 2  |-  ( ( A  ~<  2o  \/  A  ~<  ( A  X.  A ) )  ->  A  e. FinVII )
411, 40sylbi 195 1  |-  ( A  e. FinVI  ->  A  e. FinVII )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    e. wcel 1756   E.wrex 2716   _Vcvv 2972    \ cdif 3325    C_ wss 3328   class class class wbr 4292   Ord word 4718   Oncon0 4719    X. cxp 4838   dom cdm 4840   omcom 6476   2oc2o 6914    ~~ cen 7307    ~<_ cdom 7308    ~< csdm 7309   Fincfn 7310   cardccrd 8105  FinVIcfin6 8452  FinVIIcfin7 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-oi 7724  df-card 8109  df-fin6 8459  df-fin7 8460
This theorem is referenced by:  fin2so  28416
  Copyright terms: Public domain W3C validator