MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin4i Unicode version

Theorem fin4i 8134
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
fin4i  |-  ( ( X  C.  A  /\  X  ~~  A )  ->  -.  A  e. FinIV )

Proof of Theorem fin4i
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isfin4 8133 . . 3  |-  ( A  e. FinIV  ->  ( A  e. FinIV  <->  -.  E. x ( x  C.  A  /\  x  ~~  A
) ) )
21ibi 233 . 2  |-  ( A  e. FinIV  ->  -.  E. x
( x  C.  A  /\  x  ~~  A ) )
3 relen 7073 . . . . 5  |-  Rel  ~~
43brrelexi 4877 . . . 4  |-  ( X 
~~  A  ->  X  e.  _V )
54adantl 453 . . 3  |-  ( ( X  C.  A  /\  X  ~~  A )  ->  X  e.  _V )
6 psseq1 3394 . . . . 5  |-  ( x  =  X  ->  (
x  C.  A  <->  X  C.  A ) )
7 breq1 4175 . . . . 5  |-  ( x  =  X  ->  (
x  ~~  A  <->  X  ~~  A ) )
86, 7anbi12d 692 . . . 4  |-  ( x  =  X  ->  (
( x  C.  A  /\  x  ~~  A )  <-> 
( X  C.  A  /\  X  ~~  A ) ) )
98spcegv 2997 . . 3  |-  ( X  e.  _V  ->  (
( X  C.  A  /\  X  ~~  A )  ->  E. x ( x 
C.  A  /\  x  ~~  A ) ) )
105, 9mpcom 34 . 2  |-  ( ( X  C.  A  /\  X  ~~  A )  ->  E. x ( x  C.  A  /\  x  ~~  A
) )
112, 10nsyl3 113 1  |-  ( ( X  C.  A  /\  X  ~~  A )  ->  -.  A  e. FinIV )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   _Vcvv 2916    C. wpss 3281   class class class wbr 4172    ~~ cen 7065  FinIVcfin4 8116
This theorem is referenced by:  fin4en1  8145  ssfin4  8146  ominf4  8148  isfin4-3  8151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-rel 4844  df-en 7069  df-fin4 8123
  Copyright terms: Public domain W3C validator