MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin4en1 Structured version   Visualization version   Unicode version

Theorem fin4en1 8736
Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin4en1  |-  ( A 
~~  B  ->  ( A  e. FinIV  ->  B  e. FinIV ) )

Proof of Theorem fin4en1
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 7615 . 2  |-  ( A 
~~  B  ->  B  ~~  A )
2 bren 7575 . . . 4  |-  ( B 
~~  A  <->  E. f 
f : B -1-1-onto-> A )
3 simpr 463 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  ->  x  C.  B )
4 f1of1 5811 . . . . . . . . . . . . 13  |-  ( f : B -1-1-onto-> A  ->  f : B -1-1-> A )
5 pssss 3527 . . . . . . . . . . . . . 14  |-  ( x 
C.  B  ->  x  C_  B )
6 ssid 3450 . . . . . . . . . . . . . 14  |-  B  C_  B
75, 6jctir 541 . . . . . . . . . . . . 13  |-  ( x 
C.  B  ->  (
x  C_  B  /\  B  C_  B ) )
8 f1imapss 6165 . . . . . . . . . . . . 13  |-  ( ( f : B -1-1-> A  /\  ( x  C_  B  /\  B  C_  B ) )  ->  ( (
f " x ) 
C.  ( f " B )  <->  x  C.  B
) )
94, 7, 8syl2an 480 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( ( f "
x )  C.  (
f " B )  <-> 
x  C.  B )
)
103, 9mpbird 236 . . . . . . . . . . 11  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( f " x
)  C.  ( f " B ) )
11 imadmrn 5177 . . . . . . . . . . . . . 14  |-  ( f
" dom  f )  =  ran  f
12 f1odm 5816 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> A  ->  dom  f  =  B )
1312imaeq2d 5167 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-onto-> A  ->  ( f " dom  f )  =  ( f " B
) )
14 dff1o5 5821 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> A  <->  ( f : B -1-1-> A  /\  ran  f  =  A ) )
1514simprbi 466 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-onto-> A  ->  ran  f  =  A )
1611, 13, 153eqtr3a 2508 . . . . . . . . . . . . 13  |-  ( f : B -1-1-onto-> A  ->  ( f " B )  =  A )
1716adantr 467 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( f " B
)  =  A )
1817psseq2d 3525 . . . . . . . . . . 11  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( ( f "
x )  C.  (
f " B )  <-> 
( f " x
)  C.  A )
)
1910, 18mpbid 214 . . . . . . . . . 10  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( f " x
)  C.  A )
2019adantrr 722 . . . . . . . . 9  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  ( f "
x )  C.  A
)
21 vex 3047 . . . . . . . . . . . . . 14  |-  x  e. 
_V
2221f1imaen 7628 . . . . . . . . . . . . 13  |-  ( ( f : B -1-1-> A  /\  x  C_  B )  ->  ( f "
x )  ~~  x
)
234, 5, 22syl2an 480 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-onto-> A  /\  x  C.  B )  -> 
( f " x
)  ~~  x )
2423adantrr 722 . . . . . . . . . . 11  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  ( f "
x )  ~~  x
)
25 simprr 765 . . . . . . . . . . 11  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  x  ~~  B
)
26 entr 7618 . . . . . . . . . . 11  |-  ( ( ( f " x
)  ~~  x  /\  x  ~~  B )  -> 
( f " x
)  ~~  B )
2724, 25, 26syl2anc 666 . . . . . . . . . 10  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  ( f "
x )  ~~  B
)
28 vex 3047 . . . . . . . . . . . 12  |-  f  e. 
_V
29 f1oen3g 7582 . . . . . . . . . . . 12  |-  ( ( f  e.  _V  /\  f : B -1-1-onto-> A )  ->  B  ~~  A )
3028, 29mpan 675 . . . . . . . . . . 11  |-  ( f : B -1-1-onto-> A  ->  B  ~~  A )
3130adantr 467 . . . . . . . . . 10  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  B  ~~  A
)
32 entr 7618 . . . . . . . . . 10  |-  ( ( ( f " x
)  ~~  B  /\  B  ~~  A )  -> 
( f " x
)  ~~  A )
3327, 31, 32syl2anc 666 . . . . . . . . 9  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  ( f "
x )  ~~  A
)
34 fin4i 8725 . . . . . . . . 9  |-  ( ( ( f " x
)  C.  A  /\  ( f " x
)  ~~  A )  ->  -.  A  e. FinIV )
3520, 33, 34syl2anc 666 . . . . . . . 8  |-  ( ( f : B -1-1-onto-> A  /\  ( x  C.  B  /\  x  ~~  B ) )  ->  -.  A  e. FinIV )
3635ex 436 . . . . . . 7  |-  ( f : B -1-1-onto-> A  ->  ( (
x  C.  B  /\  x  ~~  B )  ->  -.  A  e. FinIV ) )
3736exlimdv 1778 . . . . . 6  |-  ( f : B -1-1-onto-> A  ->  ( E. x ( x  C.  B  /\  x  ~~  B
)  ->  -.  A  e. FinIV
) )
3837con2d 119 . . . . 5  |-  ( f : B -1-1-onto-> A  ->  ( A  e. FinIV  ->  -.  E. x ( x  C.  B  /\  x  ~~  B ) ) )
3938exlimiv 1775 . . . 4  |-  ( E. f  f : B -1-1-onto-> A  ->  ( A  e. FinIV  ->  -.  E. x ( x  C.  B  /\  x  ~~  B
) ) )
402, 39sylbi 199 . . 3  |-  ( B 
~~  A  ->  ( A  e. FinIV  ->  -.  E. x
( x  C.  B  /\  x  ~~  B ) ) )
41 relen 7571 . . . . 5  |-  Rel  ~~
4241brrelexi 4874 . . . 4  |-  ( B 
~~  A  ->  B  e.  _V )
43 isfin4 8724 . . . 4  |-  ( B  e.  _V  ->  ( B  e. FinIV 
<->  -.  E. x ( x  C.  B  /\  x  ~~  B ) ) )
4442, 43syl 17 . . 3  |-  ( B 
~~  A  ->  ( B  e. FinIV 
<->  -.  E. x ( x  C.  B  /\  x  ~~  B ) ) )
4540, 44sylibrd 238 . 2  |-  ( B 
~~  A  ->  ( A  e. FinIV  ->  B  e. FinIV ) )
461, 45syl 17 1  |-  ( A 
~~  B  ->  ( A  e. FinIV  ->  B  e. FinIV ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443   E.wex 1662    e. wcel 1886   _Vcvv 3044    C_ wss 3403    C. wpss 3404   class class class wbr 4401   dom cdm 4833   ran crn 4834   "cima 4836   -1-1->wf1 5578   -1-1-onto->wf1o 5580    ~~ cen 7563  FinIVcfin4 8707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-er 7360  df-en 7567  df-fin4 8714
This theorem is referenced by:  domfin4  8738  isfin4-3  8742
  Copyright terms: Public domain W3C validator