MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin45 Structured version   Unicode version

Theorem fin45 8557
Description: Every IV-finite set is V-finite: if we can pack two copies of the set into itself, we can certainly leave space. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
fin45  |-  ( A  e. FinIV  ->  A  e. FinV )

Proof of Theorem fin45
StepHypRef Expression
1 isfin4-3 8480 . . 3  |-  ( A  e. FinIV  <-> 
A  ~<  ( A  +c  1o ) )
2 simpl 454 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  A  =/=  (/) )
3 relen 7311 . . . . . . . . . . . 12  |-  Rel  ~~
43brrelexi 4875 . . . . . . . . . . 11  |-  ( A 
~~  ( A  +c  A )  ->  A  e.  _V )
54adantl 463 . . . . . . . . . 10  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  A  e.  _V )
6 0sdomg 7436 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
75, 6syl 16 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  ( (/) 
~<  A  <->  A  =/=  (/) ) )
82, 7mpbird 232 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  (/)  ~<  A )
9 0sdom1dom 7506 . . . . . . . 8  |-  ( (/)  ~<  A 
<->  1o  ~<_  A )
108, 9sylib 196 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  1o  ~<_  A )
11 cdadom2 8352 . . . . . . 7  |-  ( 1o  ~<_  A  ->  ( A  +c  1o )  ~<_  ( A  +c  A ) )
1210, 11syl 16 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  ( A  +c  1o )  ~<_  ( A  +c  A ) )
13 domen2 7450 . . . . . . 7  |-  ( A 
~~  ( A  +c  A )  ->  (
( A  +c  1o )  ~<_  A  <->  ( A  +c  1o )  ~<_  ( A  +c  A ) ) )
1413adantl 463 . . . . . 6  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  (
( A  +c  1o )  ~<_  A  <->  ( A  +c  1o )  ~<_  ( A  +c  A ) ) )
1512, 14mpbird 232 . . . . 5  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  ( A  +c  1o )  ~<_  A )
16 domnsym 7433 . . . . 5  |-  ( ( A  +c  1o )  ~<_  A  ->  -.  A  ~<  ( A  +c  1o ) )
1715, 16syl 16 . . . 4  |-  ( ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) )  ->  -.  A  ~<  ( A  +c  1o ) )
1817con2i 120 . . 3  |-  ( A 
~<  ( A  +c  1o )  ->  -.  ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) ) )
191, 18sylbi 195 . 2  |-  ( A  e. FinIV  ->  -.  ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) ) )
20 isfin5-2 8556 . 2  |-  ( A  e. FinIV  ->  ( A  e. FinV  <->  -.  ( A  =/=  (/)  /\  A  ~~  ( A  +c  A
) ) ) )
2119, 20mpbird 232 1  |-  ( A  e. FinIV  ->  A  e. FinV )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1761    =/= wne 2604   _Vcvv 2970   (/)c0 3634   class class class wbr 4289  (class class class)co 6090   1oc1o 6909    ~~ cen 7303    ~<_ cdom 7304    ~< csdm 7305    +c ccda 8332  FinIVcfin4 8445  FinVcfin5 8447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-cda 8333  df-fin4 8452  df-fin5 8454
This theorem is referenced by:  fin2so  28341
  Copyright terms: Public domain W3C validator