MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem41 Structured version   Unicode version

Theorem fin23lem41 8723
Description: Lemma for fin23 8760. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
fin23lem41  |-  ( A  e.  F  ->  A  e. FinIII )
Distinct variable groups:    g, a, x, A    F, a
Allowed substitution hints:    F( x, g)

Proof of Theorem fin23lem41
Dummy variables  b 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 7520 . . . . 5  |-  ( om  ~<_  ~P A  ->  E. b 
b : om -1-1-> ~P A )
2 fin23lem40.f . . . . . . . . . 10  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
32fin23lem33 8716 . . . . . . . . 9  |-  ( A  e.  F  ->  E. c A. d ( ( d : om -1-1-> _V  /\  U.
ran  d  C_  A
)  ->  ( (
c `  d ) : om -1-1-> _V  /\  U. ran  ( c `  d
)  C.  U. ran  d
) ) )
43adantl 464 . . . . . . . 8  |-  ( ( b : om -1-1-> ~P A  /\  A  e.  F
)  ->  E. c A. d ( ( d : om -1-1-> _V  /\  U.
ran  d  C_  A
)  ->  ( (
c `  d ) : om -1-1-> _V  /\  U. ran  ( c `  d
)  C.  U. ran  d
) ) )
5 ssv 3509 . . . . . . . . . . 11  |-  ~P A  C_ 
_V
6 f1ss 5768 . . . . . . . . . . 11  |-  ( ( b : om -1-1-> ~P A  /\  ~P A  C_  _V )  ->  b : om -1-1-> _V )
75, 6mpan2 669 . . . . . . . . . 10  |-  ( b : om -1-1-> ~P A  ->  b : om -1-1-> _V )
87ad2antrr 723 . . . . . . . . 9  |-  ( ( ( b : om -1-1-> ~P A  /\  A  e.  F )  /\  A. d ( ( d : om -1-1-> _V  /\  U.
ran  d  C_  A
)  ->  ( (
c `  d ) : om -1-1-> _V  /\  U. ran  ( c `  d
)  C.  U. ran  d
) ) )  -> 
b : om -1-1-> _V )
9 f1f 5763 . . . . . . . . . . . 12  |-  ( b : om -1-1-> ~P A  ->  b : om --> ~P A
)
10 frn 5719 . . . . . . . . . . . 12  |-  ( b : om --> ~P A  ->  ran  b  C_  ~P A )
11 uniss 4256 . . . . . . . . . . . 12  |-  ( ran  b  C_  ~P A  ->  U. ran  b  C_  U. ~P A )
129, 10, 113syl 20 . . . . . . . . . . 11  |-  ( b : om -1-1-> ~P A  ->  U. ran  b  C_  U. ~P A )
13 unipw 4687 . . . . . . . . . . 11  |-  U. ~P A  =  A
1412, 13syl6sseq 3535 . . . . . . . . . 10  |-  ( b : om -1-1-> ~P A  ->  U. ran  b  C_  A )
1514ad2antrr 723 . . . . . . . . 9  |-  ( ( ( b : om -1-1-> ~P A  /\  A  e.  F )  /\  A. d ( ( d : om -1-1-> _V  /\  U.
ran  d  C_  A
)  ->  ( (
c `  d ) : om -1-1-> _V  /\  U. ran  ( c `  d
)  C.  U. ran  d
) ) )  ->  U. ran  b  C_  A
)
16 f1eq1 5758 . . . . . . . . . . . . . 14  |-  ( d  =  e  ->  (
d : om -1-1-> _V  <->  e : om -1-1-> _V )
)
17 rneq 5217 . . . . . . . . . . . . . . . 16  |-  ( d  =  e  ->  ran  d  =  ran  e )
1817unieqd 4245 . . . . . . . . . . . . . . 15  |-  ( d  =  e  ->  U. ran  d  =  U. ran  e
)
1918sseq1d 3516 . . . . . . . . . . . . . 14  |-  ( d  =  e  ->  ( U. ran  d  C_  A  <->  U.
ran  e  C_  A
) )
2016, 19anbi12d 708 . . . . . . . . . . . . 13  |-  ( d  =  e  ->  (
( d : om -1-1-> _V 
/\  U. ran  d  C_  A )  <->  ( e : om -1-1-> _V  /\  U. ran  e  C_  A ) ) )
21 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( d  =  e  ->  (
c `  d )  =  ( c `  e ) )
22 f1eq1 5758 . . . . . . . . . . . . . . 15  |-  ( ( c `  d )  =  ( c `  e )  ->  (
( c `  d
) : om -1-1-> _V  <->  ( c `  e ) : om -1-1-> _V )
)
2321, 22syl 16 . . . . . . . . . . . . . 14  |-  ( d  =  e  ->  (
( c `  d
) : om -1-1-> _V  <->  ( c `  e ) : om -1-1-> _V )
)
2421rneqd 5219 . . . . . . . . . . . . . . . 16  |-  ( d  =  e  ->  ran  ( c `  d
)  =  ran  (
c `  e )
)
2524unieqd 4245 . . . . . . . . . . . . . . 15  |-  ( d  =  e  ->  U. ran  ( c `  d
)  =  U. ran  ( c `  e
) )
2625, 18psseq12d 3584 . . . . . . . . . . . . . 14  |-  ( d  =  e  ->  ( U. ran  ( c `  d )  C.  U. ran  d 
<-> 
U. ran  ( c `  e )  C.  U. ran  e ) )
2723, 26anbi12d 708 . . . . . . . . . . . . 13  |-  ( d  =  e  ->  (
( ( c `  d ) : om -1-1-> _V 
/\  U. ran  ( c `
 d )  C.  U.
ran  d )  <->  ( (
c `  e ) : om -1-1-> _V  /\  U. ran  ( c `  e
)  C.  U. ran  e
) ) )
2820, 27imbi12d 318 . . . . . . . . . . . 12  |-  ( d  =  e  ->  (
( ( d : om -1-1-> _V  /\  U. ran  d  C_  A )  -> 
( ( c `  d ) : om -1-1-> _V 
/\  U. ran  ( c `
 d )  C.  U.
ran  d ) )  <-> 
( ( e : om -1-1-> _V  /\  U. ran  e  C_  A )  -> 
( ( c `  e ) : om -1-1-> _V 
/\  U. ran  ( c `
 e )  C.  U.
ran  e ) ) ) )
2928cbvalv 2028 . . . . . . . . . . 11  |-  ( A. d ( ( d : om -1-1-> _V  /\  U.
ran  d  C_  A
)  ->  ( (
c `  d ) : om -1-1-> _V  /\  U. ran  ( c `  d
)  C.  U. ran  d
) )  <->  A. e
( ( e : om -1-1-> _V  /\  U. ran  e  C_  A )  -> 
( ( c `  e ) : om -1-1-> _V 
/\  U. ran  ( c `
 e )  C.  U.
ran  e ) ) )
3029biimpi 194 . . . . . . . . . 10  |-  ( A. d ( ( d : om -1-1-> _V  /\  U.
ran  d  C_  A
)  ->  ( (
c `  d ) : om -1-1-> _V  /\  U. ran  ( c `  d
)  C.  U. ran  d
) )  ->  A. e
( ( e : om -1-1-> _V  /\  U. ran  e  C_  A )  -> 
( ( c `  e ) : om -1-1-> _V 
/\  U. ran  ( c `
 e )  C.  U.
ran  e ) ) )
3130adantl 464 . . . . . . . . 9  |-  ( ( ( b : om -1-1-> ~P A  /\  A  e.  F )  /\  A. d ( ( d : om -1-1-> _V  /\  U.
ran  d  C_  A
)  ->  ( (
c `  d ) : om -1-1-> _V  /\  U. ran  ( c `  d
)  C.  U. ran  d
) ) )  ->  A. e ( ( e : om -1-1-> _V  /\  U.
ran  e  C_  A
)  ->  ( (
c `  e ) : om -1-1-> _V  /\  U. ran  ( c `  e
)  C.  U. ran  e
) ) )
32 eqid 2454 . . . . . . . . 9  |-  ( rec ( c ,  b )  |`  om )  =  ( rec (
c ,  b )  |`  om )
332, 8, 15, 31, 32fin23lem39 8721 . . . . . . . 8  |-  ( ( ( b : om -1-1-> ~P A  /\  A  e.  F )  /\  A. d ( ( d : om -1-1-> _V  /\  U.
ran  d  C_  A
)  ->  ( (
c `  d ) : om -1-1-> _V  /\  U. ran  ( c `  d
)  C.  U. ran  d
) ) )  ->  -.  A  e.  F
)
344, 33exlimddv 1731 . . . . . . 7  |-  ( ( b : om -1-1-> ~P A  /\  A  e.  F
)  ->  -.  A  e.  F )
3534pm2.01da 440 . . . . . 6  |-  ( b : om -1-1-> ~P A  ->  -.  A  e.  F
)
3635exlimiv 1727 . . . . 5  |-  ( E. b  b : om -1-1-> ~P A  ->  -.  A  e.  F )
371, 36syl 16 . . . 4  |-  ( om  ~<_  ~P A  ->  -.  A  e.  F )
3837con2i 120 . . 3  |-  ( A  e.  F  ->  -.  om  ~<_  ~P A )
39 pwexg 4621 . . . 4  |-  ( A  e.  F  ->  ~P A  e.  _V )
40 isfin4-2 8685 . . . 4  |-  ( ~P A  e.  _V  ->  ( ~P A  e. FinIV  <->  -.  om  ~<_  ~P A
) )
4139, 40syl 16 . . 3  |-  ( A  e.  F  ->  ( ~P A  e. FinIV  <->  -.  om  ~<_  ~P A
) )
4238, 41mpbird 232 . 2  |-  ( A  e.  F  ->  ~P A  e. FinIV )
43 isfin3 8667 . 2  |-  ( A  e. FinIII  <->  ~P A  e. FinIV )
4442, 43sylibr 212 1  |-  ( A  e.  F  ->  A  e. FinIII )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1396    = wceq 1398   E.wex 1617    e. wcel 1823   {cab 2439   A.wral 2804   _Vcvv 3106    C_ wss 3461    C. wpss 3462   ~Pcpw 3999   U.cuni 4235   |^|cint 4271   class class class wbr 4439   suc csuc 4869   ran crn 4989    |` cres 4990   -->wf 5566   -1-1->wf1 5567   ` cfv 5570  (class class class)co 6270   omcom 6673   reccrdg 7067    ^m cmap 7412    ~<_ cdom 7507  FinIVcfin4 8651  FinIIIcfin3 8652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-seqom 7105  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311  df-fin4 8658  df-fin3 8659
This theorem is referenced by:  isf33lem  8737
  Copyright terms: Public domain W3C validator