MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem40 Structured version   Visualization version   Unicode version

Theorem fin23lem40 8807
Description: Lemma for fin23 8845. FinII sets satisfy the descending chain condition. (Contributed by Stefan O'Rear, 3-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
fin23lem40  |-  ( A  e. FinII  ->  A  e.  F
)
Distinct variable groups:    g, a, x, A    F, a
Allowed substitution hints:    F( x, g)

Proof of Theorem fin23lem40
Dummy variables  b 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 7519 . . . 4  |-  ( f  e.  ( ~P A  ^m  om )  ->  f : om --> ~P A )
2 simpl 463 . . . . . 6  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  A  e. FinII )
3 frn 5758 . . . . . . 7  |-  ( f : om --> ~P A  ->  ran  f  C_  ~P A )
43ad2antrl 739 . . . . . 6  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  ran  f  C_  ~P A )
5 fdm 5756 . . . . . . . . 9  |-  ( f : om --> ~P A  ->  dom  f  =  om )
6 peano1 6739 . . . . . . . . . 10  |-  (/)  e.  om
7 ne0i 3749 . . . . . . . . . 10  |-  ( (/)  e.  om  ->  om  =/=  (/) )
86, 7mp1i 13 . . . . . . . . 9  |-  ( f : om --> ~P A  ->  om  =/=  (/) )
95, 8eqnetrd 2703 . . . . . . . 8  |-  ( f : om --> ~P A  ->  dom  f  =/=  (/) )
10 dm0rn0 5070 . . . . . . . . 9  |-  ( dom  f  =  (/)  <->  ran  f  =  (/) )
1110necon3bii 2688 . . . . . . . 8  |-  ( dom  f  =/=  (/)  <->  ran  f  =/=  (/) )
129, 11sylib 201 . . . . . . 7  |-  ( f : om --> ~P A  ->  ran  f  =/=  (/) )
1312ad2antrl 739 . . . . . 6  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  ran  f  =/=  (/) )
14 ffn 5751 . . . . . . . . 9  |-  ( f : om --> ~P A  ->  f  Fn  om )
1514ad2antrl 739 . . . . . . . 8  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  f  Fn  om )
16 sspss 3544 . . . . . . . . . . 11  |-  ( ( f `  suc  b
)  C_  ( f `  b )  <->  ( (
f `  suc  b ) 
C.  ( f `  b )  \/  (
f `  suc  b )  =  ( f `  b ) ) )
17 fvex 5898 . . . . . . . . . . . . . . 15  |-  ( f `
 b )  e. 
_V
18 fvex 5898 . . . . . . . . . . . . . . 15  |-  ( f `
 suc  b )  e.  _V
1917, 18brcnv 5036 . . . . . . . . . . . . . 14  |-  ( ( f `  b ) `' [ C.]  ( f `  suc  b )  <->  ( f `  suc  b ) [ C.]  ( f `  b
) )
2017brrpss 6601 . . . . . . . . . . . . . 14  |-  ( ( f `  suc  b
) [ C.]  ( f `  b )  <->  ( f `  suc  b )  C.  ( f `  b
) )
2119, 20bitri 257 . . . . . . . . . . . . 13  |-  ( ( f `  b ) `' [ C.]  ( f `  suc  b )  <->  ( f `  suc  b )  C.  ( f `  b
) )
22 eqcom 2469 . . . . . . . . . . . . 13  |-  ( ( f `  b )  =  ( f `  suc  b )  <->  ( f `  suc  b )  =  ( f `  b
) )
2321, 22orbi12i 528 . . . . . . . . . . . 12  |-  ( ( ( f `  b
) `' [ C.]  (
f `  suc  b )  \/  ( f `  b )  =  ( f `  suc  b
) )  <->  ( (
f `  suc  b ) 
C.  ( f `  b )  \/  (
f `  suc  b )  =  ( f `  b ) ) )
2423biimpri 211 . . . . . . . . . . 11  |-  ( ( ( f `  suc  b )  C.  (
f `  b )  \/  ( f `  suc  b )  =  ( f `  b ) )  ->  ( (
f `  b ) `' [ C.]  ( f `  suc  b )  \/  (
f `  b )  =  ( f `  suc  b ) ) )
2516, 24sylbi 200 . . . . . . . . . 10  |-  ( ( f `  suc  b
)  C_  ( f `  b )  ->  (
( f `  b
) `' [ C.]  (
f `  suc  b )  \/  ( f `  b )  =  ( f `  suc  b
) ) )
2625ralimi 2793 . . . . . . . . 9  |-  ( A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b )  ->  A. b  e.  om  ( ( f `
 b ) `' [ C.]  ( f `  suc  b )  \/  (
f `  b )  =  ( f `  suc  b ) ) )
2726ad2antll 740 . . . . . . . 8  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  A. b  e.  om  ( ( f `  b ) `' [ C.]  (
f `  suc  b )  \/  ( f `  b )  =  ( f `  suc  b
) ) )
28 porpss 6602 . . . . . . . . . 10  |- [ C.]  Po  ran  f
29 cnvpo 5393 . . . . . . . . . 10  |-  ( [ C.]  Po  ran  f  <->  `' [ C.]  Po  ran  f )
3028, 29mpbi 213 . . . . . . . . 9  |-  `' [ C.]  Po  ran  f
3130a1i 11 . . . . . . . 8  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  `' [ C.]  Po  ran  f )
32 sornom 8733 . . . . . . . 8  |-  ( ( f  Fn  om  /\  A. b  e.  om  (
( f `  b
) `' [ C.]  (
f `  suc  b )  \/  ( f `  b )  =  ( f `  suc  b
) )  /\  `' [ C.] 
Po  ran  f )  ->  `' [ C.]  Or  ran  f
)
3315, 27, 31, 32syl3anc 1276 . . . . . . 7  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  `' [ C.]  Or  ran  f )
34 cnvso 5394 . . . . . . 7  |-  ( [ C.]  Or  ran  f  <->  `' [ C.]  Or  ran  f )
3533, 34sylibr 217 . . . . . 6  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  -> [ C.]  Or  ran  f
)
36 fin2i2 8774 . . . . . 6  |-  ( ( ( A  e. FinII  /\  ran  f  C_  ~P A )  /\  ( ran  f  =/=  (/)  /\ [ C.]  Or  ran  f ) )  ->  |^| ran  f  e.  ran  f )
372, 4, 13, 35, 36syl22anc 1277 . . . . 5  |-  ( ( A  e. FinII  /\  ( f : om --> ~P A  /\  A. b  e.  om  (
f `  suc  b ) 
C_  ( f `  b ) ) )  ->  |^| ran  f  e. 
ran  f )
3837expr 624 . . . 4  |-  ( ( A  e. FinII  /\  f : om
--> ~P A )  -> 
( A. b  e. 
om  ( f `  suc  b )  C_  (
f `  b )  ->  |^| ran  f  e. 
ran  f ) )
391, 38sylan2 481 . . 3  |-  ( ( A  e. FinII  /\  f  e.  ( ~P A  ^m  om ) )  ->  ( A. b  e.  om  ( f `  suc  b )  C_  (
f `  b )  ->  |^| ran  f  e. 
ran  f ) )
4039ralrimiva 2814 . 2  |-  ( A  e. FinII  ->  A. f  e.  ( ~P A  ^m  om ) ( A. b  e.  om  ( f `  suc  b )  C_  (
f `  b )  ->  |^| ran  f  e. 
ran  f ) )
41 fin23lem40.f . . 3  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
4241isfin3ds 8785 . 2  |-  ( A  e. FinII  ->  ( A  e.  F  <->  A. f  e.  ( ~P A  ^m  om ) ( A. b  e.  om  ( f `  suc  b )  C_  (
f `  b )  ->  |^| ran  f  e. 
ran  f ) ) )
4340, 42mpbird 240 1  |-  ( A  e. FinII  ->  A  e.  F
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 374    /\ wa 375    = wceq 1455    e. wcel 1898   {cab 2448    =/= wne 2633   A.wral 2749    C_ wss 3416    C. wpss 3417   (/)c0 3743   ~Pcpw 3963   |^|cint 4248   class class class wbr 4416    Po wpo 4772    Or wor 4773   `'ccnv 4852   dom cdm 4853   ran crn 4854   suc csuc 5444    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6315   [ C.] crpss 6597   omcom 6719    ^m cmap 7498  FinIIcfin2 8735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-rpss 6598  df-om 6720  df-1st 6820  df-2nd 6821  df-map 7500  df-fin2 8742
This theorem is referenced by:  fin23  8845
  Copyright terms: Public domain W3C validator