MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem38 Structured version   Unicode version

Theorem fin23lem38 8679
Description: Lemma for fin23 8719. The contradictory chain has no minimum. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fin23lem33.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.f  |-  ( ph  ->  h : om -1-1-> _V )
fin23lem.g  |-  ( ph  ->  U. ran  h  C_  G )
fin23lem.h  |-  ( ph  ->  A. j ( ( j : om -1-1-> _V  /\ 
U. ran  j  C_  G )  ->  (
( i `  j
) : om -1-1-> _V  /\ 
U. ran  ( i `  j )  C.  U. ran  j ) ) )
fin23lem.i  |-  Y  =  ( rec ( i ,  h )  |`  om )
Assertion
Ref Expression
fin23lem38  |-  ( ph  ->  -.  |^| ran  ( b  e.  om  |->  U. ran  ( Y `  b ) )  e.  ran  (
b  e.  om  |->  U.
ran  ( Y `  b ) ) )
Distinct variable groups:    a, b,
g, i, j, x, h, G    F, a    ph, a, b, j    Y, a, b, j
Allowed substitution hints:    ph( x, g, h, i)    F( x, g, h, i, j, b)    Y( x, g, h, i)

Proof of Theorem fin23lem38
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 peano2 6656 . . . . . . . 8  |-  ( d  e.  om  ->  suc  d  e.  om )
2 eqid 2400 . . . . . . . . . 10  |-  U. ran  ( Y `  suc  d
)  =  U. ran  ( Y `  suc  d
)
3 fveq2 5803 . . . . . . . . . . . . . 14  |-  ( b  =  suc  d  -> 
( Y `  b
)  =  ( Y `
 suc  d )
)
43rneqd 5170 . . . . . . . . . . . . 13  |-  ( b  =  suc  d  ->  ran  ( Y `  b
)  =  ran  ( Y `  suc  d ) )
54unieqd 4198 . . . . . . . . . . . 12  |-  ( b  =  suc  d  ->  U. ran  ( Y `  b )  =  U. ran  ( Y `  suc  d ) )
65eqeq2d 2414 . . . . . . . . . . 11  |-  ( b  =  suc  d  -> 
( U. ran  ( Y `  suc  d )  =  U. ran  ( Y `  b )  <->  U.
ran  ( Y `  suc  d )  =  U. ran  ( Y `  suc  d ) ) )
76rspcev 3157 . . . . . . . . . 10  |-  ( ( suc  d  e.  om  /\ 
U. ran  ( Y `  suc  d )  = 
U. ran  ( Y `  suc  d ) )  ->  E. b  e.  om  U.
ran  ( Y `  suc  d )  =  U. ran  ( Y `  b
) )
82, 7mpan2 669 . . . . . . . . 9  |-  ( suc  d  e.  om  ->  E. b  e.  om  U. ran  ( Y `  suc  d )  =  U. ran  ( Y `  b
) )
9 fvex 5813 . . . . . . . . . . . 12  |-  ( Y `
 suc  d )  e.  _V
109rnex 6670 . . . . . . . . . . 11  |-  ran  ( Y `  suc  d )  e.  _V
1110uniex 6532 . . . . . . . . . 10  |-  U. ran  ( Y `  suc  d
)  e.  _V
12 eqid 2400 . . . . . . . . . . 11  |-  ( b  e.  om  |->  U. ran  ( Y `  b ) )  =  ( b  e.  om  |->  U. ran  ( Y `  b ) )
1312elrnmpt 5189 . . . . . . . . . 10  |-  ( U. ran  ( Y `  suc  d )  e.  _V  ->  ( U. ran  ( Y `  suc  d )  e.  ran  ( b  e.  om  |->  U. ran  ( Y `  b ) )  <->  E. b  e.  om  U.
ran  ( Y `  suc  d )  =  U. ran  ( Y `  b
) ) )
1411, 13ax-mp 5 . . . . . . . . 9  |-  ( U. ran  ( Y `  suc  d )  e.  ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  <->  E. b  e.  om  U. ran  ( Y `  suc  d )  =  U. ran  ( Y `  b )
)
158, 14sylibr 212 . . . . . . . 8  |-  ( suc  d  e.  om  ->  U.
ran  ( Y `  suc  d )  e.  ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) ) )
161, 15syl 17 . . . . . . 7  |-  ( d  e.  om  ->  U. ran  ( Y `  suc  d
)  e.  ran  (
b  e.  om  |->  U.
ran  ( Y `  b ) ) )
1716adantl 464 . . . . . 6  |-  ( (
ph  /\  d  e.  om )  ->  U. ran  ( Y `  suc  d )  e.  ran  ( b  e.  om  |->  U. ran  ( Y `  b ) ) )
18 intss1 4239 . . . . . 6  |-  ( U. ran  ( Y `  suc  d )  e.  ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  ->  |^| ran  ( b  e. 
om  |->  U. ran  ( Y `
 b ) ) 
C_  U. ran  ( Y `
 suc  d )
)
1917, 18syl 17 . . . . 5  |-  ( (
ph  /\  d  e.  om )  ->  |^| ran  (
b  e.  om  |->  U.
ran  ( Y `  b ) )  C_  U.
ran  ( Y `  suc  d ) )
20 fin23lem33.f . . . . . 6  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
21 fin23lem.f . . . . . 6  |-  ( ph  ->  h : om -1-1-> _V )
22 fin23lem.g . . . . . 6  |-  ( ph  ->  U. ran  h  C_  G )
23 fin23lem.h . . . . . 6  |-  ( ph  ->  A. j ( ( j : om -1-1-> _V  /\ 
U. ran  j  C_  G )  ->  (
( i `  j
) : om -1-1-> _V  /\ 
U. ran  ( i `  j )  C.  U. ran  j ) ) )
24 fin23lem.i . . . . . 6  |-  Y  =  ( rec ( i ,  h )  |`  om )
2520, 21, 22, 23, 24fin23lem35 8677 . . . . 5  |-  ( (
ph  /\  d  e.  om )  ->  U. ran  ( Y `  suc  d ) 
C.  U. ran  ( Y `
 d ) )
2619, 25sspsstrd 3548 . . . 4  |-  ( (
ph  /\  d  e.  om )  ->  |^| ran  (
b  e.  om  |->  U.
ran  ( Y `  b ) )  C.  U.
ran  ( Y `  d ) )
27 dfpss2 3525 . . . . 5  |-  ( |^| ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  C.  U.
ran  ( Y `  d )  <->  ( |^| ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  C_  U.
ran  ( Y `  d )  /\  -.  |^|
ran  ( b  e. 
om  |->  U. ran  ( Y `
 b ) )  =  U. ran  ( Y `  d )
) )
2827simprbi 462 . . . 4  |-  ( |^| ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  C.  U.
ran  ( Y `  d )  ->  -.  |^|
ran  ( b  e. 
om  |->  U. ran  ( Y `
 b ) )  =  U. ran  ( Y `  d )
)
2926, 28syl 17 . . 3  |-  ( (
ph  /\  d  e.  om )  ->  -.  |^| ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  = 
U. ran  ( Y `  d ) )
3029nrexdv 2857 . 2  |-  ( ph  ->  -.  E. d  e. 
om  |^| ran  ( b  e.  om  |->  U. ran  ( Y `  b ) )  =  U. ran  ( Y `  d ) )
31 fveq2 5803 . . . . . . 7  |-  ( b  =  d  ->  ( Y `  b )  =  ( Y `  d ) )
3231rneqd 5170 . . . . . 6  |-  ( b  =  d  ->  ran  ( Y `  b )  =  ran  ( Y `
 d ) )
3332unieqd 4198 . . . . 5  |-  ( b  =  d  ->  U. ran  ( Y `  b )  =  U. ran  ( Y `  d )
)
3433cbvmptv 4484 . . . 4  |-  ( b  e.  om  |->  U. ran  ( Y `  b ) )  =  ( d  e.  om  |->  U. ran  ( Y `  d ) )
3534elrnmpt 5189 . . 3  |-  ( |^| ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  e. 
ran  ( b  e. 
om  |->  U. ran  ( Y `
 b ) )  ->  ( |^| ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  e. 
ran  ( b  e. 
om  |->  U. ran  ( Y `
 b ) )  <->  E. d  e.  om  |^|
ran  ( b  e. 
om  |->  U. ran  ( Y `
 b ) )  =  U. ran  ( Y `  d )
) )
3635ibi 241 . 2  |-  ( |^| ran  ( b  e.  om  |->  U.
ran  ( Y `  b ) )  e. 
ran  ( b  e. 
om  |->  U. ran  ( Y `
 b ) )  ->  E. d  e.  om  |^|
ran  ( b  e. 
om  |->  U. ran  ( Y `
 b ) )  =  U. ran  ( Y `  d )
)
3730, 36nsyl 121 1  |-  ( ph  ->  -.  |^| ran  ( b  e.  om  |->  U. ran  ( Y `  b ) )  e.  ran  (
b  e.  om  |->  U.
ran  ( Y `  b ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1401    = wceq 1403    e. wcel 1840   {cab 2385   A.wral 2751   E.wrex 2752   _Vcvv 3056    C_ wss 3411    C. wpss 3412   ~Pcpw 3952   U.cuni 4188   |^|cint 4224    |-> cmpt 4450   suc csuc 4821   ran crn 4941    |` cres 4942   -1-1->wf1 5520   ` cfv 5523  (class class class)co 6232   omcom 6636   reccrdg 7030    ^m cmap 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-reu 2758  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-int 4225  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-om 6637  df-recs 6997  df-rdg 7031
This theorem is referenced by:  fin23lem39  8680
  Copyright terms: Public domain W3C validator