MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem36 Structured version   Unicode version

Theorem fin23lem36 8719
Description: Lemma for fin23 8760. Weak order property of  Y. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.f  |-  ( ph  ->  h : om -1-1-> _V )
fin23lem.g  |-  ( ph  ->  U. ran  h  C_  G )
fin23lem.h  |-  ( ph  ->  A. j ( ( j : om -1-1-> _V  /\ 
U. ran  j  C_  G )  ->  (
( i `  j
) : om -1-1-> _V  /\ 
U. ran  ( i `  j )  C.  U. ran  j ) ) )
fin23lem.i  |-  Y  =  ( rec ( i ,  h )  |`  om )
Assertion
Ref Expression
fin23lem36  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( B  C_  A  /\  ph ) )  ->  U. ran  ( Y `  A )  C_  U. ran  ( Y `  B ) )
Distinct variable groups:    g, a,
i, j, x    A, a, j    h, a, G, g, i, j, x    B, a    F, a    ph, a,
j    Y, a, j
Allowed substitution hints:    ph( x, g, h, i)    A( x, g, h, i)    B( x, g, h, i, j)    F( x, g, h, i, j)    Y( x, g, h, i)

Proof of Theorem fin23lem36
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 fveq2 5848 . . . . . . 7  |-  ( a  =  B  ->  ( Y `  a )  =  ( Y `  B ) )
21rneqd 5219 . . . . . 6  |-  ( a  =  B  ->  ran  ( Y `  a )  =  ran  ( Y `
 B ) )
32unieqd 4245 . . . . 5  |-  ( a  =  B  ->  U. ran  ( Y `  a )  =  U. ran  ( Y `  B )
)
43sseq1d 3516 . . . 4  |-  ( a  =  B  ->  ( U. ran  ( Y `  a )  C_  U. ran  ( Y `  B )  <->  U. ran  ( Y `  B )  C_  U. ran  ( Y `  B ) ) )
54imbi2d 314 . . 3  |-  ( a  =  B  ->  (
( ph  ->  U. ran  ( Y `  a ) 
C_  U. ran  ( Y `
 B ) )  <-> 
( ph  ->  U. ran  ( Y `  B ) 
C_  U. ran  ( Y `
 B ) ) ) )
6 fveq2 5848 . . . . . . 7  |-  ( a  =  b  ->  ( Y `  a )  =  ( Y `  b ) )
76rneqd 5219 . . . . . 6  |-  ( a  =  b  ->  ran  ( Y `  a )  =  ran  ( Y `
 b ) )
87unieqd 4245 . . . . 5  |-  ( a  =  b  ->  U. ran  ( Y `  a )  =  U. ran  ( Y `  b )
)
98sseq1d 3516 . . . 4  |-  ( a  =  b  ->  ( U. ran  ( Y `  a )  C_  U. ran  ( Y `  B )  <->  U. ran  ( Y `  b )  C_  U. ran  ( Y `  B ) ) )
109imbi2d 314 . . 3  |-  ( a  =  b  ->  (
( ph  ->  U. ran  ( Y `  a ) 
C_  U. ran  ( Y `
 B ) )  <-> 
( ph  ->  U. ran  ( Y `  b ) 
C_  U. ran  ( Y `
 B ) ) ) )
11 fveq2 5848 . . . . . . 7  |-  ( a  =  suc  b  -> 
( Y `  a
)  =  ( Y `
 suc  b )
)
1211rneqd 5219 . . . . . 6  |-  ( a  =  suc  b  ->  ran  ( Y `  a
)  =  ran  ( Y `  suc  b ) )
1312unieqd 4245 . . . . 5  |-  ( a  =  suc  b  ->  U. ran  ( Y `  a )  =  U. ran  ( Y `  suc  b ) )
1413sseq1d 3516 . . . 4  |-  ( a  =  suc  b  -> 
( U. ran  ( Y `  a )  C_ 
U. ran  ( Y `  B )  <->  U. ran  ( Y `  suc  b ) 
C_  U. ran  ( Y `
 B ) ) )
1514imbi2d 314 . . 3  |-  ( a  =  suc  b  -> 
( ( ph  ->  U.
ran  ( Y `  a )  C_  U. ran  ( Y `  B ) )  <->  ( ph  ->  U.
ran  ( Y `  suc  b )  C_  U. ran  ( Y `  B ) ) ) )
16 fveq2 5848 . . . . . . 7  |-  ( a  =  A  ->  ( Y `  a )  =  ( Y `  A ) )
1716rneqd 5219 . . . . . 6  |-  ( a  =  A  ->  ran  ( Y `  a )  =  ran  ( Y `
 A ) )
1817unieqd 4245 . . . . 5  |-  ( a  =  A  ->  U. ran  ( Y `  a )  =  U. ran  ( Y `  A )
)
1918sseq1d 3516 . . . 4  |-  ( a  =  A  ->  ( U. ran  ( Y `  a )  C_  U. ran  ( Y `  B )  <->  U. ran  ( Y `  A )  C_  U. ran  ( Y `  B ) ) )
2019imbi2d 314 . . 3  |-  ( a  =  A  ->  (
( ph  ->  U. ran  ( Y `  a ) 
C_  U. ran  ( Y `
 B ) )  <-> 
( ph  ->  U. ran  ( Y `  A ) 
C_  U. ran  ( Y `
 B ) ) ) )
21 ssid 3508 . . . 4  |-  U. ran  ( Y `  B ) 
C_  U. ran  ( Y `
 B )
2221a1ii 27 . . 3  |-  ( B  e.  om  ->  ( ph  ->  U. ran  ( Y `
 B )  C_  U.
ran  ( Y `  B ) ) )
23 simprr 755 . . . . . . . 8  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  ( B  C_  b  /\  ph ) )  ->  ph )
24 simpll 751 . . . . . . . 8  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  ( B  C_  b  /\  ph ) )  -> 
b  e.  om )
25 fin23lem33.f . . . . . . . . 9  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
26 fin23lem.f . . . . . . . . 9  |-  ( ph  ->  h : om -1-1-> _V )
27 fin23lem.g . . . . . . . . 9  |-  ( ph  ->  U. ran  h  C_  G )
28 fin23lem.h . . . . . . . . 9  |-  ( ph  ->  A. j ( ( j : om -1-1-> _V  /\ 
U. ran  j  C_  G )  ->  (
( i `  j
) : om -1-1-> _V  /\ 
U. ran  ( i `  j )  C.  U. ran  j ) ) )
29 fin23lem.i . . . . . . . . 9  |-  Y  =  ( rec ( i ,  h )  |`  om )
3025, 26, 27, 28, 29fin23lem35 8718 . . . . . . . 8  |-  ( (
ph  /\  b  e.  om )  ->  U. ran  ( Y `  suc  b ) 
C.  U. ran  ( Y `
 b ) )
3123, 24, 30syl2anc 659 . . . . . . 7  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  ( B  C_  b  /\  ph ) )  ->  U. ran  ( Y `  suc  b )  C.  U. ran  ( Y `  b ) )
3231pssssd 3587 . . . . . 6  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  ( B  C_  b  /\  ph ) )  ->  U. ran  ( Y `  suc  b )  C_  U. ran  ( Y `  b ) )
33 sstr2 3496 . . . . . 6  |-  ( U. ran  ( Y `  suc  b )  C_  U. ran  ( Y `  b )  ->  ( U. ran  ( Y `  b ) 
C_  U. ran  ( Y `
 B )  ->  U. ran  ( Y `  suc  b )  C_  U. ran  ( Y `  B ) ) )
3432, 33syl 16 . . . . 5  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  ( B  C_  b  /\  ph ) )  -> 
( U. ran  ( Y `  b )  C_ 
U. ran  ( Y `  B )  ->  U. ran  ( Y `  suc  b
)  C_  U. ran  ( Y `  B )
) )
3534expr 613 . . . 4  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  B  C_  b )  ->  ( ph  ->  ( U. ran  ( Y `
 b )  C_  U.
ran  ( Y `  B )  ->  U. ran  ( Y `  suc  b
)  C_  U. ran  ( Y `  B )
) ) )
3635a2d 26 . . 3  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  B  C_  b )  ->  ( ( ph  ->  U. ran  ( Y `
 b )  C_  U.
ran  ( Y `  B ) )  -> 
( ph  ->  U. ran  ( Y `  suc  b
)  C_  U. ran  ( Y `  B )
) ) )
375, 10, 15, 20, 22, 36findsg 6700 . 2  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  C_  A )  ->  ( ph  ->  U.
ran  ( Y `  A )  C_  U. ran  ( Y `  B ) ) )
3837impr 617 1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( B  C_  A  /\  ph ) )  ->  U. ran  ( Y `  A )  C_  U. ran  ( Y `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367   A.wal 1396    = wceq 1398    e. wcel 1823   {cab 2439   A.wral 2804   _Vcvv 3106    C_ wss 3461    C. wpss 3462   ~Pcpw 3999   U.cuni 4235   |^|cint 4271   suc csuc 4869   ran crn 4989    |` cres 4990   -1-1->wf1 5567   ` cfv 5570  (class class class)co 6270   omcom 6673   reccrdg 7067    ^m cmap 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-om 6674  df-recs 7034  df-rdg 7068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator