MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem31 Structured version   Unicode version

Theorem fin23lem31 8719
Description: Lemma for fin23 8765. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.b  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
fin23lem.c  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P  ( x  i^i  P ) 
~~  w ) )
fin23lem.d  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
fin23lem.e  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
Assertion
Ref Expression
fin23lem31  |-  ( ( t : om -1-1-> V  /\  G  e.  F  /\  U. ran  t  C_  G )  ->  U. ran  Z 
C.  U. ran  t )
Distinct variable groups:    g, i,
t, u, v, x, z, a    F, a, t    V, a    w, a, x, z, P    v,
a, R, i, u    U, a, i, u, v, z    Z, a    g, a, G, t, x
Allowed substitution hints:    P( v, u, t, g, i)    Q( x, z, w, v, u, t, g, i, a)    R( x, z, w, t, g)    U( x, w, t, g)    F( x, z, w, v, u, g, i)    G( z, w, v, u, i)    V( x, z, w, v, u, t, g, i)    Z( x, z, w, v, u, t, g, i)

Proof of Theorem fin23lem31
StepHypRef Expression
1 fin23lem17.f . . . 4  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
21ssfin3ds 8706 . . 3  |-  ( ( G  e.  F  /\  U.
ran  t  C_  G
)  ->  U. ran  t  e.  F )
3 fin23lem.a . . . . . 6  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
4 fin23lem.b . . . . . 6  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
5 fin23lem.c . . . . . 6  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P  ( x  i^i  P ) 
~~  w ) )
6 fin23lem.d . . . . . 6  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
7 fin23lem.e . . . . . 6  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
83, 1, 4, 5, 6, 7fin23lem29 8717 . . . . 5  |-  U. ran  Z 
C_  U. ran  t
98a1i 11 . . . 4  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z 
C_  U. ran  t )
103, 1fin23lem21 8715 . . . . . . 7  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  =/=  (/) )
1110ancoms 453 . . . . . 6  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  |^| ran  U  =/=  (/) )
12 n0 3794 . . . . . 6  |-  ( |^| ran 
U  =/=  (/)  <->  E. a 
a  e.  |^| ran  U )
1311, 12sylib 196 . . . . 5  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  E. a 
a  e.  |^| ran  U )
143fnseqom 7117 . . . . . . . . . . . . . 14  |-  U  Fn  om
15 fndm 5678 . . . . . . . . . . . . . 14  |-  ( U  Fn  om  ->  dom  U  =  om )
1614, 15ax-mp 5 . . . . . . . . . . . . 13  |-  dom  U  =  om
17 peano1 6697 . . . . . . . . . . . . . 14  |-  (/)  e.  om
18 ne0i 3791 . . . . . . . . . . . . . 14  |-  ( (/)  e.  om  ->  om  =/=  (/) )
1917, 18ax-mp 5 . . . . . . . . . . . . 13  |-  om  =/=  (/)
2016, 19eqnetri 2763 . . . . . . . . . . . 12  |-  dom  U  =/=  (/)
21 dm0rn0 5217 . . . . . . . . . . . . 13  |-  ( dom 
U  =  (/)  <->  ran  U  =  (/) )
2221necon3bii 2735 . . . . . . . . . . . 12  |-  ( dom 
U  =/=  (/)  <->  ran  U  =/=  (/) )
2320, 22mpbi 208 . . . . . . . . . . 11  |-  ran  U  =/=  (/)
24 intssuni 4304 . . . . . . . . . . 11  |-  ( ran 
U  =/=  (/)  ->  |^| ran  U 
C_  U. ran  U )
2523, 24ax-mp 5 . . . . . . . . . 10  |-  |^| ran  U 
C_  U. ran  U
263fin23lem16 8711 . . . . . . . . . 10  |-  U. ran  U  =  U. ran  t
2725, 26sseqtri 3536 . . . . . . . . 9  |-  |^| ran  U 
C_  U. ran  t
2827sseli 3500 . . . . . . . 8  |-  ( a  e.  |^| ran  U  -> 
a  e.  U. ran  t )
2928adantl 466 . . . . . . 7  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  a  e.  U. ran  t )
30 f1fun 5781 . . . . . . . . . . . . 13  |-  ( t : om -1-1-> V  ->  Fun  t )
3130adantr 465 . . . . . . . . . . . 12  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  Fun  t )
323, 1, 4, 5, 6, 7fin23lem30 8718 . . . . . . . . . . . 12  |-  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) )
3331, 32syl 16 . . . . . . . . . . 11  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  ( U. ran  Z  i^i  |^| ran 
U )  =  (/) )
34 disj 3867 . . . . . . . . . . 11  |-  ( ( U. ran  Z  i^i  |^|
ran  U )  =  (/) 
<-> 
A. a  e.  U. ran  Z  -.  a  e. 
|^| ran  U )
3533, 34sylib 196 . . . . . . . . . 10  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  A. a  e.  U. ran  Z  -.  a  e.  |^| ran  U
)
36 rsp 2830 . . . . . . . . . 10  |-  ( A. a  e.  U. ran  Z  -.  a  e.  |^| ran  U  ->  ( a  e. 
U. ran  Z  ->  -.  a  e.  |^| ran  U ) )
3735, 36syl 16 . . . . . . . . 9  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  (
a  e.  U. ran  Z  ->  -.  a  e.  |^|
ran  U ) )
3837con2d 115 . . . . . . . 8  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  (
a  e.  |^| ran  U  ->  -.  a  e.  U.
ran  Z ) )
3938imp 429 . . . . . . 7  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  -.  a  e.  U.
ran  Z )
40 nelne1 2796 . . . . . . 7  |-  ( ( a  e.  U. ran  t  /\  -.  a  e. 
U. ran  Z )  ->  U. ran  t  =/=  U. ran  Z )
4129, 39, 40syl2anc 661 . . . . . 6  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  U. ran  t  =/=  U. ran  Z )
4241necomd 2738 . . . . 5  |-  ( ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  /\  a  e.  |^| ran  U )  ->  U. ran  Z  =/=  U. ran  t )
4313, 42exlimddv 1702 . . . 4  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z  =/=  U. ran  t
)
44 df-pss 3492 . . . 4  |-  ( U. ran  Z  C.  U. ran  t  <->  ( U. ran  Z  C_  U.
ran  t  /\  U. ran  Z  =/=  U. ran  t ) )
459, 43, 44sylanbrc 664 . . 3  |-  ( ( t : om -1-1-> V  /\  U. ran  t  e.  F )  ->  U. ran  Z 
C.  U. ran  t )
462, 45sylan2 474 . 2  |-  ( ( t : om -1-1-> V  /\  ( G  e.  F  /\  U. ran  t  C_  G ) )  ->  U. ran  Z  C.  U. ran  t )
47463impb 1192 1  |-  ( ( t : om -1-1-> V  /\  G  e.  F  /\  U. ran  t  C_  G )  ->  U. ran  Z 
C.  U. ran  t )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   {crab 2818   _Vcvv 3113    \ cdif 3473    i^i cin 3475    C_ wss 3476    C. wpss 3477   (/)c0 3785   ifcif 3939   ~Pcpw 4010   U.cuni 4245   |^|cint 4282   class class class wbr 4447    |-> cmpt 4505   suc csuc 4880   dom cdm 4999   ran crn 5000    o. ccom 5003   Fun wfun 5580    Fn wfn 5581   -1-1->wf1 5583   ` cfv 5586   iota_crio 6242  (class class class)co 6282    |-> cmpt2 6284   omcom 6678  seq𝜔cseqom 7109    ^m cmap 7417    ~~ cen 7510   Fincfn 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-seqom 7110  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-card 8316
This theorem is referenced by:  fin23lem32  8720
  Copyright terms: Public domain W3C validator