MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem30 Structured version   Unicode version

Theorem fin23lem30 8635
Description: Lemma for fin23 8682. The residual is disjoint from the common set. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.b  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
fin23lem.c  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P  ( x  i^i  P ) 
~~  w ) )
fin23lem.d  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
fin23lem.e  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
Assertion
Ref Expression
fin23lem30  |-  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) )
Distinct variable groups:    g, i,
t, u, v, x, z, a    F, a, t    w, a, x, z, P    v, a, R, i, u    U, a, i, u, v, z    Z, a    g, a
Allowed substitution hints:    P( v, u, t, g, i)    Q( x, z, w, v, u, t, g, i, a)    R( x, z, w, t, g)    U( x, w, t, g)    F( x, z, w, v, u, g, i)    Z( x, z, w, v, u, t, g, i)

Proof of Theorem fin23lem30
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 fin23lem.e . 2  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
2 eqif 3895 . . 3  |-  ( Z  =  if ( P  e.  Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q ) )  <->  ( ( P  e.  Fin  /\  Z  =  ( t  o.  R ) )  \/  ( -.  P  e. 
Fin  /\  Z  =  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q ) ) ) )
32biimpi 194 . 2  |-  ( Z  =  if ( P  e.  Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q ) )  ->  ( ( P  e.  Fin  /\  Z  =  ( t  o.  R ) )  \/  ( -.  P  e. 
Fin  /\  Z  =  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q ) ) ) )
4 simpr 459 . . . . . . . . . . 11  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  Fun  t )
5 fin23lem.d . . . . . . . . . . . 12  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
65funmpt2 5533 . . . . . . . . . . 11  |-  Fun  R
7 funco 5534 . . . . . . . . . . 11  |-  ( ( Fun  t  /\  Fun  R )  ->  Fun  ( t  o.  R ) )
84, 6, 7sylancl 660 . . . . . . . . . 10  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  Fun  ( t  o.  R
) )
9 elunirn 6064 . . . . . . . . . 10  |-  ( Fun  ( t  o.  R
)  ->  ( a  e.  U. ran  ( t  o.  R )  <->  E. b  e.  dom  ( t  o.  R ) a  e.  ( ( t  o.  R ) `  b
) ) )
108, 9syl 16 . . . . . . . . 9  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  (
a  e.  U. ran  ( t  o.  R
)  <->  E. b  e.  dom  ( t  o.  R
) a  e.  ( ( t  o.  R
) `  b )
) )
11 dmcoss 5175 . . . . . . . . . . . 12  |-  dom  (
t  o.  R ) 
C_  dom  R
1211sseli 3413 . . . . . . . . . . 11  |-  ( b  e.  dom  ( t  o.  R )  -> 
b  e.  dom  R
)
13 fvco 5850 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  R  /\  b  e.  dom  R )  -> 
( ( t  o.  R ) `  b
)  =  ( t `
 ( R `  b ) ) )
146, 13mpan 668 . . . . . . . . . . . . . . 15  |-  ( b  e.  dom  R  -> 
( ( t  o.  R ) `  b
)  =  ( t `
 ( R `  b ) ) )
1514adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( ( t  o.  R ) `  b )  =  ( t `  ( R `
 b ) ) )
1615eleq2d 2452 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( a  e.  ( ( t  o.  R ) `  b
)  <->  a  e.  ( t `  ( R `
 b ) ) ) )
17 incom 3605 . . . . . . . . . . . . . . . 16  |-  ( ( t `  ( R `
 b ) )  i^i  |^| ran  U )  =  ( |^| ran  U  i^i  ( t `  ( R `  b ) ) )
18 difss 3545 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( om 
\  P )  C_  om
19 ominf 7648 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  -.  om  e.  Fin
20 fin23lem.b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
21 ssrab2 3499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  { v  e.  om  |  |^| ran 
U  C_  ( t `  v ) }  C_  om
2220, 21eqsstri 3447 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  P  C_  om
23 undif 3824 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( P 
C_  om  <->  ( P  u.  ( om  \  P ) )  =  om )
2422, 23mpbi 208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P  u.  ( om  \  P
) )  =  om
25 unfi 7702 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P  e.  Fin  /\  ( om  \  P )  e.  Fin )  -> 
( P  u.  ( om  \  P ) )  e.  Fin )
2624, 25syl5eqelr 2475 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( P  e.  Fin  /\  ( om  \  P )  e.  Fin )  ->  om  e.  Fin )
2726ex 432 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  Fin  ->  (
( om  \  P
)  e.  Fin  ->  om  e.  Fin ) )
2819, 27mtoi 178 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( P  e.  Fin  ->  -.  ( om  \  P )  e.  Fin )
2928ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  -.  ( om  \  P )  e.  Fin )
305fin23lem22 8620 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( om  \  P
)  C_  om  /\  -.  ( om  \  P )  e.  Fin )  ->  R : om -1-1-onto-> ( om  \  P
) )
3118, 29, 30sylancr 661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  R : om -1-1-onto-> ( om  \  P ) )
32 f1of 5724 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R : om -1-1-onto-> ( om  \  P
)  ->  R : om
--> ( om  \  P
) )
3331, 32syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  R : om --> ( om  \  P ) )
34 simpr 459 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  b  e.  dom  R )
35 fdm 5643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( R : om --> ( om 
\  P )  ->  dom  R  =  om )
3633, 35syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  dom  R  =  om )
3734, 36eleqtrd 2472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  b  e.  om )
3833, 37ffvelrnd 5934 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( R `  b )  e.  ( om  \  P ) )
3938eldifbd 3402 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  -.  ( R `  b )  e.  P
)
4020eleq2i 2460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R `  b )  e.  P  <->  ( R `  b )  e.  {
v  e.  om  |  |^| ran  U  C_  (
t `  v ) } )
4139, 40sylnib 302 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  -.  ( R `  b )  e.  {
v  e.  om  |  |^| ran  U  C_  (
t `  v ) } )
4238eldifad 3401 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( R `  b )  e.  om )
43 fveq2 5774 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( R `  b )  ->  (
t `  v )  =  ( t `  ( R `  b ) ) )
4443sseq2d 3445 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  ( R `  b )  ->  ( |^| ran  U  C_  (
t `  v )  <->  |^|
ran  U  C_  ( t `
 ( R `  b ) ) ) )
4544elrab3 3183 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R `  b )  e.  om  ->  (
( R `  b
)  e.  { v  e.  om  |  |^| ran 
U  C_  ( t `  v ) }  <->  |^| ran  U  C_  ( t `  ( R `  b )
) ) )
4642, 45syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( ( R `
 b )  e. 
{ v  e.  om  |  |^| ran  U  C_  ( t `  v
) }  <->  |^| ran  U  C_  ( t `  ( R `  b )
) ) )
4741, 46mtbid 298 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  -.  |^| ran  U  C_  ( t `  ( R `  b )
) )
48 fin23lem.a . . . . . . . . . . . . . . . . . . 19  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
4948fin23lem20 8630 . . . . . . . . . . . . . . . . . 18  |-  ( ( R `  b )  e.  om  ->  ( |^| ran  U  C_  (
t `  ( R `  b ) )  \/  ( |^| ran  U  i^i  ( t `  ( R `  b )
) )  =  (/) ) )
5042, 49syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( |^| ran  U 
C_  ( t `  ( R `  b ) )  \/  ( |^| ran 
U  i^i  ( t `  ( R `  b
) ) )  =  (/) ) )
51 orel1 380 . . . . . . . . . . . . . . . . 17  |-  ( -. 
|^| ran  U  C_  (
t `  ( R `  b ) )  -> 
( ( |^| ran  U 
C_  ( t `  ( R `  b ) )  \/  ( |^| ran 
U  i^i  ( t `  ( R `  b
) ) )  =  (/) )  ->  ( |^| ran 
U  i^i  ( t `  ( R `  b
) ) )  =  (/) ) )
5247, 50, 51sylc 60 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( |^| ran  U  i^i  ( t `  ( R `  b ) ) )  =  (/) )
5317, 52syl5eq 2435 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( ( t `
 ( R `  b ) )  i^i  |^| ran  U )  =  (/) )
54 disj 3783 . . . . . . . . . . . . . . 15  |-  ( ( ( t `  ( R `  b )
)  i^i  |^| ran  U
)  =  (/)  <->  A. a  e.  ( t `  ( R `  b )
)  -.  a  e. 
|^| ran  U )
5553, 54sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  A. a  e.  ( t `  ( R `
 b ) )  -.  a  e.  |^| ran 
U )
56 rsp 2748 . . . . . . . . . . . . . 14  |-  ( A. a  e.  ( t `  ( R `  b
) )  -.  a  e.  |^| ran  U  -> 
( a  e.  ( t `  ( R `
 b ) )  ->  -.  a  e.  |^|
ran  U ) )
5755, 56syl 16 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( a  e.  ( t `  ( R `  b )
)  ->  -.  a  e.  |^| ran  U ) )
5816, 57sylbid 215 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Fin  /\ 
Fun  t )  /\  b  e.  dom  R )  ->  ( a  e.  ( ( t  o.  R ) `  b
)  ->  -.  a  e.  |^| ran  U ) )
5958ex 432 . . . . . . . . . . 11  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  (
b  e.  dom  R  ->  ( a  e.  ( ( t  o.  R
) `  b )  ->  -.  a  e.  |^| ran 
U ) ) )
6012, 59syl5 32 . . . . . . . . . 10  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  (
b  e.  dom  (
t  o.  R )  ->  ( a  e.  ( ( t  o.  R ) `  b
)  ->  -.  a  e.  |^| ran  U ) ) )
6160rexlimdv 2872 . . . . . . . . 9  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  ( E. b  e.  dom  ( t  o.  R
) a  e.  ( ( t  o.  R
) `  b )  ->  -.  a  e.  |^| ran 
U ) )
6210, 61sylbid 215 . . . . . . . 8  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  (
a  e.  U. ran  ( t  o.  R
)  ->  -.  a  e.  |^| ran  U ) )
6362ralrimiv 2794 . . . . . . 7  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  A. a  e.  U. ran  ( t  o.  R )  -.  a  e.  |^| ran  U )
64 disj 3783 . . . . . . 7  |-  ( ( U. ran  ( t  o.  R )  i^i  |^| ran  U )  =  (/) 
<-> 
A. a  e.  U. ran  ( t  o.  R
)  -.  a  e. 
|^| ran  U )
6563, 64sylibr 212 . . . . . 6  |-  ( ( P  e.  Fin  /\  Fun  t )  ->  ( U. ran  ( t  o.  R )  i^i  |^| ran 
U )  =  (/) )
66 rneq 5141 . . . . . . . . 9  |-  ( Z  =  ( t  o.  R )  ->  ran  Z  =  ran  ( t  o.  R ) )
6766unieqd 4173 . . . . . . . 8  |-  ( Z  =  ( t  o.  R )  ->  U. ran  Z  =  U. ran  (
t  o.  R ) )
6867ineq1d 3613 . . . . . . 7  |-  ( Z  =  ( t  o.  R )  ->  ( U. ran  Z  i^i  |^| ran 
U )  =  ( U. ran  ( t  o.  R )  i^i  |^| ran  U ) )
6968eqeq1d 2384 . . . . . 6  |-  ( Z  =  ( t  o.  R )  ->  (
( U. ran  Z  i^i  |^| ran  U )  =  (/)  <->  ( U. ran  ( t  o.  R
)  i^i  |^| ran  U
)  =  (/) ) )
7065, 69syl5ibr 221 . . . . 5  |-  ( Z  =  ( t  o.  R )  ->  (
( P  e.  Fin  /\ 
Fun  t )  -> 
( U. ran  Z  i^i  |^| ran  U )  =  (/) ) )
7170expd 434 . . . 4  |-  ( Z  =  ( t  o.  R )  ->  ( P  e.  Fin  ->  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) ) ) )
7271impcom 428 . . 3  |-  ( ( P  e.  Fin  /\  Z  =  ( t  o.  R ) )  -> 
( Fun  t  ->  ( U. ran  Z  i^i  |^|
ran  U )  =  (/) ) )
73 rneq 5141 . . . . . . . 8  |-  ( Z  =  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  ->  ran  Z  =  ran  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q ) )
7473unieqd 4173 . . . . . . 7  |-  ( Z  =  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  ->  U. ran  Z  = 
U. ran  ( (
z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  o.  Q
) )
7574ineq1d 3613 . . . . . 6  |-  ( Z  =  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  ->  ( U. ran  Z  i^i  |^| ran  U )  =  ( U. ran  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q )  i^i  |^| ran  U ) )
76 rncoss 5176 . . . . . . . 8  |-  ran  (
( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q )  C_  ran  ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )
7776unissi 4186 . . . . . . 7  |-  U. ran  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q )  C_  U.
ran  ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )
78 disj 3783 . . . . . . . 8  |-  ( ( U. ran  ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  i^i  |^| ran  U )  =  (/)  <->  A. a  e.  U. ran  ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  -.  a  e. 
|^| ran  U )
79 eluniab 4174 . . . . . . . . . 10  |-  ( a  e.  U. { b  |  E. z  e.  P  b  =  ( ( t `  z
)  \  |^| ran  U
) }  <->  E. b
( a  e.  b  /\  E. z  e.  P  b  =  ( ( t `  z
)  \  |^| ran  U
) ) )
80 eleq2 2455 . . . . . . . . . . . . . 14  |-  ( b  =  ( ( t `
 z )  \  |^| ran  U )  -> 
( a  e.  b  <-> 
a  e.  ( ( t `  z ) 
\  |^| ran  U ) ) )
81 eldifn 3541 . . . . . . . . . . . . . 14  |-  ( a  e.  ( ( t `
 z )  \  |^| ran  U )  ->  -.  a  e.  |^| ran  U )
8280, 81syl6bi 228 . . . . . . . . . . . . 13  |-  ( b  =  ( ( t `
 z )  \  |^| ran  U )  -> 
( a  e.  b  ->  -.  a  e.  |^|
ran  U ) )
8382rexlimivw 2871 . . . . . . . . . . . 12  |-  ( E. z  e.  P  b  =  ( ( t `
 z )  \  |^| ran  U )  -> 
( a  e.  b  ->  -.  a  e.  |^|
ran  U ) )
8483impcom 428 . . . . . . . . . . 11  |-  ( ( a  e.  b  /\  E. z  e.  P  b  =  ( ( t `
 z )  \  |^| ran  U ) )  ->  -.  a  e.  |^|
ran  U )
8584exlimiv 1730 . . . . . . . . . 10  |-  ( E. b ( a  e.  b  /\  E. z  e.  P  b  =  ( ( t `  z )  \  |^| ran 
U ) )  ->  -.  a  e.  |^| ran  U )
8679, 85sylbi 195 . . . . . . . . 9  |-  ( a  e.  U. { b  |  E. z  e.  P  b  =  ( ( t `  z
)  \  |^| ran  U
) }  ->  -.  a  e.  |^| ran  U
)
87 eqid 2382 . . . . . . . . . . 11  |-  ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  =  ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )
8887rnmpt 5161 . . . . . . . . . 10  |-  ran  (
z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  =  {
b  |  E. z  e.  P  b  =  ( ( t `  z )  \  |^| ran 
U ) }
8988unieqi 4172 . . . . . . . . 9  |-  U. ran  ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  = 
U. { b  |  E. z  e.  P  b  =  ( (
t `  z )  \  |^| ran  U ) }
9086, 89eleq2s 2490 . . . . . . . 8  |-  ( a  e.  U. ran  (
z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  ->  -.  a  e.  |^| ran  U
)
9178, 90mprgbir 2746 . . . . . . 7  |-  ( U. ran  ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  i^i  |^| ran  U )  =  (/)
92 ssdisj 3792 . . . . . . 7  |-  ( ( U. ran  ( ( z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  o.  Q
)  C_  U. ran  (
z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  /\  ( U. ran  ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  i^i  |^| ran  U )  =  (/) )  ->  ( U. ran  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  i^i  |^| ran  U )  =  (/) )
9377, 91, 92mp2an 670 . . . . . 6  |-  ( U. ran  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q )  i^i  |^| ran  U )  =  (/)
9475, 93syl6eq 2439 . . . . 5  |-  ( Z  =  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) )
9594a1d 25 . . . 4  |-  ( Z  =  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  ->  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) ) )
9695adantl 464 . . 3  |-  ( ( -.  P  e.  Fin  /\  Z  =  ( ( z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  o.  Q
) )  ->  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) ) )
9772, 96jaoi 377 . 2  |-  ( ( ( P  e.  Fin  /\  Z  =  ( t  o.  R ) )  \/  ( -.  P  e.  Fin  /\  Z  =  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q ) ) )  ->  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) ) )
981, 3, 97mp2b 10 1  |-  ( Fun  t  ->  ( U. ran  Z  i^i  |^| ran  U )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1399   E.wex 1620    e. wcel 1826   {cab 2367   A.wral 2732   E.wrex 2733   {crab 2736   _Vcvv 3034    \ cdif 3386    u. cun 3387    i^i cin 3388    C_ wss 3389   (/)c0 3711   ifcif 3857   ~Pcpw 3927   U.cuni 4163   |^|cint 4199   class class class wbr 4367    |-> cmpt 4425   suc csuc 4794   dom cdm 4913   ran crn 4914    o. ccom 4917   Fun wfun 5490   -->wf 5492   -1-1-onto->wf1o 5495   ` cfv 5496   iota_crio 6157  (class class class)co 6196    |-> cmpt2 6198   omcom 6599  seq𝜔cseqom 7030    ^m cmap 7338    ~~ cen 7432   Fincfn 7435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-2nd 6700  df-recs 6960  df-rdg 6994  df-seqom 7031  df-1o 7048  df-oadd 7052  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-card 8233
This theorem is referenced by:  fin23lem31  8636
  Copyright terms: Public domain W3C validator