MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem27 Structured version   Unicode version

Theorem fin23lem27 8509
Description: The mapping constructed in fin23lem22 8508 is in fact an isomorphism. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b  |-  C  =  ( i  e.  om  |->  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  i )
)
Assertion
Ref Expression
fin23lem27  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  C  Isom  _E  ,  _E  ( om ,  S ) )
Distinct variable group:    i, j, S
Allowed substitution hints:    C( i, j)

Proof of Theorem fin23lem27
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 6497 . . . 4  |-  Ord  om
2 ordwe 4744 . . . 4  |-  ( Ord 
om  ->  _E  We  om )
3 weso 4723 . . . 4  |-  (  _E  We  om  ->  _E  Or  om )
41, 2, 3mp2b 10 . . 3  |-  _E  Or  om
54a1i 11 . 2  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  _E  Or  om )
6 sopo 4670 . . . . 5  |-  (  _E  Or  om  ->  _E  Po  om )
74, 6ax-mp 5 . . . 4  |-  _E  Po  om
8 poss 4655 . . . 4  |-  ( S 
C_  om  ->  (  _E  Po  om  ->  _E  Po  S ) )
97, 8mpi 17 . . 3  |-  ( S 
C_  om  ->  _E  Po  S )
109adantr 465 . 2  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  _E  Po  S )
11 fin23lem22.b . . . 4  |-  C  =  ( i  e.  om  |->  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  i )
)
1211fin23lem22 8508 . . 3  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  C : om -1-1-onto-> S )
13 f1ofo 5660 . . 3  |-  ( C : om -1-1-onto-> S  ->  C : om -onto-> S )
1412, 13syl 16 . 2  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  C : om -onto-> S
)
15 nnsdomel 8172 . . . . . . . 8  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( a  e.  b  <-> 
a  ~<  b ) )
1615adantl 466 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  e.  b  <->  a  ~<  b ) )
1716biimpd 207 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  e.  b  -> 
a  ~<  b ) )
18 fin23lem23 8507 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  a  e.  om )  ->  E! j  e.  S  ( j  i^i 
S )  ~~  a
)
1918adantrr 716 . . . . . . . . . . . 12  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  E! j  e.  S  (
j  i^i  S )  ~~  a )
20 ineq1 3557 . . . . . . . . . . . . . 14  |-  ( j  =  i  ->  (
j  i^i  S )  =  ( i  i^i 
S ) )
2120breq1d 4314 . . . . . . . . . . . . 13  |-  ( j  =  i  ->  (
( j  i^i  S
)  ~~  a  <->  ( i  i^i  S )  ~~  a
) )
2221cbvreuv 2961 . . . . . . . . . . . 12  |-  ( E! j  e.  S  ( j  i^i  S ) 
~~  a  <->  E! i  e.  S  ( i  i^i  S )  ~~  a
)
2319, 22sylib 196 . . . . . . . . . . 11  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  E! i  e.  S  (
i  i^i  S )  ~~  a )
24 nfv 1673 . . . . . . . . . . . 12  |-  F/ i ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~~  a
2521cbvriotav 6075 . . . . . . . . . . . 12  |-  ( iota_ j  e.  S  ( j  i^i  S )  ~~  a )  =  (
iota_ i  e.  S  ( i  i^i  S
)  ~~  a )
26 ineq1 3557 . . . . . . . . . . . . 13  |-  ( i  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  ->  ( i  i^i  S )  =  ( ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S ) )
2726breq1d 4314 . . . . . . . . . . . 12  |-  ( i  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  ->  ( (
i  i^i  S )  ~~  a  <->  ( ( iota_ j  e.  S  ( j  i^i  S )  ~~  a )  i^i  S
)  ~~  a )
)
2824, 25, 27riotaprop 6088 . . . . . . . . . . 11  |-  ( E! i  e.  S  ( i  i^i  S ) 
~~  a  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  S  /\  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~~  a
) )
2923, 28syl 16 . . . . . . . . . 10  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  S  /\  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~~  a
) )
3029simprd 463 . . . . . . . . 9  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~~  a
)
3130adantrr 716 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~~  a )
32 simprr 756 . . . . . . . . 9  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
a  ~<  b )
33 fin23lem23 8507 . . . . . . . . . . . . . . 15  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  b  e.  om )  ->  E! j  e.  S  ( j  i^i 
S )  ~~  b
)
3433adantrl 715 . . . . . . . . . . . . . 14  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  E! j  e.  S  (
j  i^i  S )  ~~  b )
3520breq1d 4314 . . . . . . . . . . . . . . 15  |-  ( j  =  i  ->  (
( j  i^i  S
)  ~~  b  <->  ( i  i^i  S )  ~~  b
) )
3635cbvreuv 2961 . . . . . . . . . . . . . 14  |-  ( E! j  e.  S  ( j  i^i  S ) 
~~  b  <->  E! i  e.  S  ( i  i^i  S )  ~~  b
)
3734, 36sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  E! i  e.  S  (
i  i^i  S )  ~~  b )
38 nfv 1673 . . . . . . . . . . . . . 14  |-  F/ i ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )  ~~  b
3935cbvriotav 6075 . . . . . . . . . . . . . 14  |-  ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  =  (
iota_ i  e.  S  ( i  i^i  S
)  ~~  b )
40 ineq1 3557 . . . . . . . . . . . . . . 15  |-  ( i  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  ->  ( i  i^i  S )  =  ( ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S ) )
4140breq1d 4314 . . . . . . . . . . . . . 14  |-  ( i  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  ->  ( (
i  i^i  S )  ~~  b  <->  ( ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  i^i  S
)  ~~  b )
)
4238, 39, 41riotaprop 6088 . . . . . . . . . . . . 13  |-  ( E! i  e.  S  ( i  i^i  S ) 
~~  b  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  e.  S  /\  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S )  ~~  b
) )
4337, 42syl 16 . . . . . . . . . . . 12  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  e.  S  /\  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S )  ~~  b
) )
4443simprd 463 . . . . . . . . . . 11  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S )  ~~  b
)
4544ensymd 7372 . . . . . . . . . 10  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  b  ~~  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)
4645adantrr 716 . . . . . . . . 9  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
b  ~~  ( ( iota_ j  e.  S  ( j  i^i  S ) 
~~  b )  i^i 
S ) )
47 sdomentr 7457 . . . . . . . . 9  |-  ( ( a  ~<  b  /\  b  ~~  ( ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  i^i  S
) )  ->  a  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)
4832, 46, 47syl2anc 661 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
a  ~<  ( ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  i^i  S
) )
49 ensdomtr 7459 . . . . . . . 8  |-  ( ( ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~~  a  /\  a  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)  ->  ( ( iota_ j  e.  S  ( j  i^i  S ) 
~~  a )  i^i 
S )  ~<  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S ) )
5031, 48, 49syl2anc 661 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( ( a  e.  om  /\  b  e.  om )  /\  a  ~<  b ) )  -> 
( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)
5150expr 615 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  ~<  b  ->  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~<  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S ) ) )
52 simpll 753 . . . . . . . . 9  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  S  C_ 
om )
53 omsson 6492 . . . . . . . . 9  |-  om  C_  On
5452, 53syl6ss 3380 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  S  C_  On )
5529simpld 459 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  a )  e.  S )
5654, 55sseldd 3369 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  a )  e.  On )
5743simpld 459 . . . . . . . 8  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  b )  e.  S )
5854, 57sseldd 3369 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  b )  e.  On )
59 onsdominel 7472 . . . . . . . 8  |-  ( ( ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  On  /\  ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  e.  On  /\  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )
)  ->  ( iota_ j  e.  S  ( j  i^i  S )  ~~  a )  e.  (
iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
)
60593expia 1189 . . . . . . 7  |-  ( ( ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  On  /\  ( iota_ j  e.  S  ( j  i^i  S )  ~~  b )  e.  On )  ->  ( ( (
iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  i^i  S )  ~<  (
( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  i^i  S )  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  a )  e.  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
) )
6156, 58, 60syl2anc 661 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
)  i^i  S )  ~<  ( ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
)  i^i  S )  ->  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
) )
6217, 51, 613syld 55 . . . . 5  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  e.  b  -> 
( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
) )
63 simprl 755 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  a  e.  om )
64 breq2 4308 . . . . . . . . 9  |-  ( i  =  a  ->  (
( j  i^i  S
)  ~~  i  <->  ( j  i^i  S )  ~~  a
) )
6564riotabidv 6066 . . . . . . . 8  |-  ( i  =  a  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  i )  =  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )
)
6665, 11fvmptg 5784 . . . . . . 7  |-  ( ( a  e.  om  /\  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  a )  e.  S )  ->  ( C `  a )  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
) )
6763, 55, 66syl2anc 661 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( C `  a )  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  a
) )
68 simprr 756 . . . . . . 7  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  b  e.  om )
69 breq2 4308 . . . . . . . . 9  |-  ( i  =  b  ->  (
( j  i^i  S
)  ~~  i  <->  ( j  i^i  S )  ~~  b
) )
7069riotabidv 6066 . . . . . . . 8  |-  ( i  =  b  ->  ( iota_ j  e.  S  ( j  i^i  S ) 
~~  i )  =  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
)
7170, 11fvmptg 5784 . . . . . . 7  |-  ( ( b  e.  om  /\  ( iota_ j  e.  S  ( j  i^i  S
)  ~~  b )  e.  S )  ->  ( C `  b )  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
) )
7268, 57, 71syl2anc 661 . . . . . 6  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  ( C `  b )  =  ( iota_ j  e.  S  ( j  i^i 
S )  ~~  b
) )
7367, 72eleq12d 2511 . . . . 5  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
( C `  a
)  e.  ( C `
 b )  <->  ( iota_ j  e.  S  ( j  i^i  S )  ~~  a )  e.  (
iota_ j  e.  S  ( j  i^i  S
)  ~~  b )
) )
7462, 73sylibrd 234 . . . 4  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  e.  b  -> 
( C `  a
)  e.  ( C `
 b ) ) )
75 epel 4647 . . . 4  |-  ( a  _E  b  <->  a  e.  b )
76 fvex 5713 . . . . 5  |-  ( C `
 b )  e. 
_V
7776epelc 4646 . . . 4  |-  ( ( C `  a )  _E  ( C `  b )  <->  ( C `  a )  e.  ( C `  b ) )
7874, 75, 773imtr4g 270 . . 3  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  ( a  e. 
om  /\  b  e.  om ) )  ->  (
a  _E  b  -> 
( C `  a
)  _E  ( C `
 b ) ) )
7978ralrimivva 2820 . 2  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  A. a  e.  om  A. b  e.  om  (
a  _E  b  -> 
( C `  a
)  _E  ( C `
 b ) ) )
80 soisoi 6031 . 2  |-  ( ( (  _E  Or  om  /\  _E  Po  S )  /\  ( C : om -onto-> S  /\  A. a  e.  om  A. b  e. 
om  ( a  _E  b  ->  ( C `  a )  _E  ( C `  b )
) ) )  ->  C  Isom  _E  ,  _E  ( om ,  S ) )
815, 10, 14, 79, 80syl22anc 1219 1  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  C  Isom  _E  ,  _E  ( om ,  S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2727   E!wreu 2729    i^i cin 3339    C_ wss 3340   class class class wbr 4304    e. cmpt 4362    _E cep 4642    Po wpo 4651    Or wor 4652    We wwe 4690   Ord word 4730   Oncon0 4731   -onto->wfo 5428   -1-1-onto->wf1o 5429   ` cfv 5430    Isom wiso 5431   iota_crio 6063   omcom 6488    ~~ cen 7319    ~< csdm 7321   Fincfn 7322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-om 6489  df-recs 6844  df-1o 6932  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-card 8121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator