MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem23 Structured version   Unicode version

Theorem fin23lem23 8723
Description: Lemma for fin23lem22 8724. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
fin23lem23  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  E! j  e.  S  ( j  i^i 
S )  ~~  i
)
Distinct variable group:    i, j, S

Proof of Theorem fin23lem23
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 fin23lem26 8722 . 2  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  E. j  e.  S  ( j  i^i  S
)  ~~  i )
2 ensym 7583 . . . . . 6  |-  ( ( a  i^i  S ) 
~~  i  ->  i  ~~  ( a  i^i  S
) )
3 entr 7586 . . . . . 6  |-  ( ( ( j  i^i  S
)  ~~  i  /\  i  ~~  ( a  i^i 
S ) )  -> 
( j  i^i  S
)  ~~  ( a  i^i  S ) )
42, 3sylan2 474 . . . . 5  |-  ( ( ( j  i^i  S
)  ~~  i  /\  ( a  i^i  S
)  ~~  i )  ->  ( j  i^i  S
)  ~~  ( a  i^i  S ) )
5 simpl 457 . . . . . . . . 9  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  S  C_  om )
6 simprl 756 . . . . . . . . 9  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  j  e.  S )
75, 6sseldd 3500 . . . . . . . 8  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  j  e.  om )
8 nnfi 7729 . . . . . . . . 9  |-  ( j  e.  om  ->  j  e.  Fin )
9 inss1 3714 . . . . . . . . 9  |-  ( j  i^i  S )  C_  j
10 ssfi 7759 . . . . . . . . 9  |-  ( ( j  e.  Fin  /\  ( j  i^i  S
)  C_  j )  ->  ( j  i^i  S
)  e.  Fin )
118, 9, 10sylancl 662 . . . . . . . 8  |-  ( j  e.  om  ->  (
j  i^i  S )  e.  Fin )
127, 11syl 16 . . . . . . 7  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( j  i^i  S )  e.  Fin )
13 simprr 757 . . . . . . . . 9  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  a  e.  S )
145, 13sseldd 3500 . . . . . . . 8  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  a  e.  om )
15 nnfi 7729 . . . . . . . . 9  |-  ( a  e.  om  ->  a  e.  Fin )
16 inss1 3714 . . . . . . . . 9  |-  ( a  i^i  S )  C_  a
17 ssfi 7759 . . . . . . . . 9  |-  ( ( a  e.  Fin  /\  ( a  i^i  S
)  C_  a )  ->  ( a  i^i  S
)  e.  Fin )
1815, 16, 17sylancl 662 . . . . . . . 8  |-  ( a  e.  om  ->  (
a  i^i  S )  e.  Fin )
1914, 18syl 16 . . . . . . 7  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( a  i^i  S )  e.  Fin )
20 nnord 6707 . . . . . . . . . 10  |-  ( j  e.  om  ->  Ord  j )
21 nnord 6707 . . . . . . . . . 10  |-  ( a  e.  om  ->  Ord  a )
22 ordtri2or2 4983 . . . . . . . . . 10  |-  ( ( Ord  j  /\  Ord  a )  ->  (
j  C_  a  \/  a  C_  j ) )
2320, 21, 22syl2an 477 . . . . . . . . 9  |-  ( ( j  e.  om  /\  a  e.  om )  ->  ( j  C_  a  \/  a  C_  j ) )
247, 14, 23syl2anc 661 . . . . . . . 8  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( j  C_  a  \/  a  C_  j ) )
25 ssrin 3719 . . . . . . . . 9  |-  ( j 
C_  a  ->  (
j  i^i  S )  C_  ( a  i^i  S
) )
26 ssrin 3719 . . . . . . . . 9  |-  ( a 
C_  j  ->  (
a  i^i  S )  C_  ( j  i^i  S
) )
2725, 26orim12i 516 . . . . . . . 8  |-  ( ( j  C_  a  \/  a  C_  j )  -> 
( ( j  i^i 
S )  C_  (
a  i^i  S )  \/  ( a  i^i  S
)  C_  ( j  i^i  S ) ) )
2824, 27syl 16 . . . . . . 7  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
j  i^i  S )  C_  ( a  i^i  S
)  \/  ( a  i^i  S )  C_  ( j  i^i  S
) ) )
29 fin23lem25 8721 . . . . . . 7  |-  ( ( ( j  i^i  S
)  e.  Fin  /\  ( a  i^i  S
)  e.  Fin  /\  ( ( j  i^i 
S )  C_  (
a  i^i  S )  \/  ( a  i^i  S
)  C_  ( j  i^i  S ) ) )  ->  ( ( j  i^i  S )  ~~  ( a  i^i  S
)  <->  ( j  i^i 
S )  =  ( a  i^i  S ) ) )
3012, 19, 28, 29syl3anc 1228 . . . . . 6  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
j  i^i  S )  ~~  ( a  i^i  S
)  <->  ( j  i^i 
S )  =  ( a  i^i  S ) ) )
31 ordom 6708 . . . . . . 7  |-  Ord  om
32 fin23lem24 8719 . . . . . . 7  |-  ( ( ( Ord  om  /\  S  C_  om )  /\  ( j  e.  S  /\  a  e.  S
) )  ->  (
( j  i^i  S
)  =  ( a  i^i  S )  <->  j  =  a ) )
3331, 32mpanl1 680 . . . . . 6  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
j  i^i  S )  =  ( a  i^i 
S )  <->  j  =  a ) )
3430, 33bitrd 253 . . . . 5  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
j  i^i  S )  ~~  ( a  i^i  S
)  <->  j  =  a ) )
354, 34syl5ib 219 . . . 4  |-  ( ( S  C_  om  /\  (
j  e.  S  /\  a  e.  S )
)  ->  ( (
( j  i^i  S
)  ~~  i  /\  ( a  i^i  S
)  ~~  i )  ->  j  =  a ) )
3635ralrimivva 2878 . . 3  |-  ( S 
C_  om  ->  A. j  e.  S  A. a  e.  S  ( (
( j  i^i  S
)  ~~  i  /\  ( a  i^i  S
)  ~~  i )  ->  j  =  a ) )
3736ad2antrr 725 . 2  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  A. j  e.  S  A. a  e.  S  ( ( ( j  i^i  S )  ~~  i  /\  ( a  i^i 
S )  ~~  i
)  ->  j  =  a ) )
38 ineq1 3689 . . . 4  |-  ( j  =  a  ->  (
j  i^i  S )  =  ( a  i^i 
S ) )
3938breq1d 4466 . . 3  |-  ( j  =  a  ->  (
( j  i^i  S
)  ~~  i  <->  ( a  i^i  S )  ~~  i
) )
4039reu4 3293 . 2  |-  ( E! j  e.  S  ( j  i^i  S ) 
~~  i  <->  ( E. j  e.  S  (
j  i^i  S )  ~~  i  /\  A. j  e.  S  A. a  e.  S  ( (
( j  i^i  S
)  ~~  i  /\  ( a  i^i  S
)  ~~  i )  ->  j  =  a ) ) )
411, 37, 40sylanbrc 664 1  |-  ( ( ( S  C_  om  /\  -.  S  e.  Fin )  /\  i  e.  om )  ->  E! j  e.  S  ( j  i^i 
S )  ~~  i
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   E!wreu 2809    i^i cin 3470    C_ wss 3471   class class class wbr 4456   Ord word 4886   omcom 6699    ~~ cen 7532   Fincfn 7535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-om 6700  df-1o 7148  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539
This theorem is referenced by:  fin23lem22  8724  fin23lem27  8725
  Copyright terms: Public domain W3C validator