MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem21 Structured version   Unicode version

Theorem fin23lem21 8767
Description: Lemma for fin23 8817. 
X is not empty. We only need here that  t has at least one set in its range besides  (/); the much stronger hypothesis here will serve as our induction hypothesis though. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
fin23lem21  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  =/=  (/) )
Distinct variable groups:    g, i,
t, u, x, a    F, a, t    V, a   
x, a    U, a,
i, u    g, a
Allowed substitution hints:    U( x, t, g)    F( x, u, g, i)    V( x, u, t, g, i)

Proof of Theorem fin23lem21
StepHypRef Expression
1 fin23lem.a . . 3  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
2 fin23lem17.f . . 3  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
31, 2fin23lem17 8766 . 2  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  e.  ran  U )
41fnseqom 7180 . . . . 5  |-  U  Fn  om
5 fvelrnb 5928 . . . . 5  |-  ( U  Fn  om  ->  ( |^| ran  U  e.  ran  U  <->  E. a  e.  om  ( U `  a )  =  |^| ran  U
) )
64, 5ax-mp 5 . . . 4  |-  ( |^| ran 
U  e.  ran  U  <->  E. a  e.  om  ( U `  a )  =  |^| ran  U )
7 id 23 . . . . . . 7  |-  ( a  e.  om  ->  a  e.  om )
8 vex 3090 . . . . . . . . . 10  |-  t  e. 
_V
9 f1f1orn 5842 . . . . . . . . . 10  |-  ( t : om -1-1-> V  -> 
t : om -1-1-onto-> ran  t )
10 f1oen3g 7592 . . . . . . . . . 10  |-  ( ( t  e.  _V  /\  t : om -1-1-onto-> ran  t )  ->  om  ~~  ran  t )
118, 9, 10sylancr 667 . . . . . . . . 9  |-  ( t : om -1-1-> V  ->  om  ~~  ran  t )
12 ominf 7790 . . . . . . . . 9  |-  -.  om  e.  Fin
13 ssdif0 3857 . . . . . . . . . . 11  |-  ( ran  t  C_  { (/) }  <->  ( ran  t  \  { (/) } )  =  (/) )
14 snfi 7657 . . . . . . . . . . . . 13  |-  { (/) }  e.  Fin
15 ssfi 7798 . . . . . . . . . . . . 13  |-  ( ( { (/) }  e.  Fin  /\ 
ran  t  C_  { (/) } )  ->  ran  t  e. 
Fin )
1614, 15mpan 674 . . . . . . . . . . . 12  |-  ( ran  t  C_  { (/) }  ->  ran  t  e.  Fin )
17 enfi 7794 . . . . . . . . . . . 12  |-  ( om 
~~  ran  t  ->  ( om  e.  Fin  <->  ran  t  e. 
Fin ) )
1816, 17syl5ibr 224 . . . . . . . . . . 11  |-  ( om 
~~  ran  t  ->  ( ran  t  C_  { (/) }  ->  om  e.  Fin ) )
1913, 18syl5bir 221 . . . . . . . . . 10  |-  ( om 
~~  ran  t  ->  ( ( ran  t  \  { (/) } )  =  (/)  ->  om  e.  Fin ) )
2019necon3bd 2643 . . . . . . . . 9  |-  ( om 
~~  ran  t  ->  ( -.  om  e.  Fin  ->  ( ran  t  \  { (/) } )  =/=  (/) ) )
2111, 12, 20mpisyl 22 . . . . . . . 8  |-  ( t : om -1-1-> V  -> 
( ran  t  \  { (/) } )  =/=  (/) )
22 n0 3777 . . . . . . . . 9  |-  ( ( ran  t  \  { (/)
} )  =/=  (/)  <->  E. a 
a  e.  ( ran  t  \  { (/) } ) )
23 eldifsn 4128 . . . . . . . . . . 11  |-  ( a  e.  ( ran  t  \  { (/) } )  <->  ( a  e.  ran  t  /\  a  =/=  (/) ) )
24 elssuni 4251 . . . . . . . . . . . 12  |-  ( a  e.  ran  t  -> 
a  C_  U. ran  t
)
25 ssn0 3801 . . . . . . . . . . . 12  |-  ( ( a  C_  U. ran  t  /\  a  =/=  (/) )  ->  U. ran  t  =/=  (/) )
2624, 25sylan 473 . . . . . . . . . . 11  |-  ( ( a  e.  ran  t  /\  a  =/=  (/) )  ->  U. ran  t  =/=  (/) )
2723, 26sylbi 198 . . . . . . . . . 10  |-  ( a  e.  ( ran  t  \  { (/) } )  ->  U. ran  t  =/=  (/) )
2827exlimiv 1769 . . . . . . . . 9  |-  ( E. a  a  e.  ( ran  t  \  { (/)
} )  ->  U. ran  t  =/=  (/) )
2922, 28sylbi 198 . . . . . . . 8  |-  ( ( ran  t  \  { (/)
} )  =/=  (/)  ->  U. ran  t  =/=  (/) )
3021, 29syl 17 . . . . . . 7  |-  ( t : om -1-1-> V  ->  U. ran  t  =/=  (/) )
311fin23lem14 8761 . . . . . . 7  |-  ( ( a  e.  om  /\  U.
ran  t  =/=  (/) )  -> 
( U `  a
)  =/=  (/) )
327, 30, 31syl2anr 480 . . . . . 6  |-  ( ( t : om -1-1-> V  /\  a  e.  om )  ->  ( U `  a )  =/=  (/) )
33 neeq1 2712 . . . . . 6  |-  ( ( U `  a )  =  |^| ran  U  ->  ( ( U `  a )  =/=  (/)  <->  |^| ran  U  =/=  (/) ) )
3432, 33syl5ibcom 223 . . . . 5  |-  ( ( t : om -1-1-> V  /\  a  e.  om )  ->  ( ( U `
 a )  = 
|^| ran  U  ->  |^|
ran  U  =/=  (/) ) )
3534rexlimdva 2924 . . . 4  |-  ( t : om -1-1-> V  -> 
( E. a  e. 
om  ( U `  a )  =  |^| ran 
U  ->  |^| ran  U  =/=  (/) ) )
366, 35syl5bi 220 . . 3  |-  ( t : om -1-1-> V  -> 
( |^| ran  U  e. 
ran  U  ->  |^| ran  U  =/=  (/) ) )
3736adantl 467 . 2  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  -> 
( |^| ran  U  e. 
ran  U  ->  |^| ran  U  =/=  (/) ) )
383, 37mpd 15 1  |-  ( ( U. ran  t  e.  F  /\  t : om -1-1-> V )  ->  |^| ran  U  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1870   {cab 2414    =/= wne 2625   A.wral 2782   E.wrex 2783   _Vcvv 3087    \ cdif 3439    i^i cin 3441    C_ wss 3442   (/)c0 3767   ifcif 3915   ~Pcpw 3985   {csn 4002   U.cuni 4222   |^|cint 4258   class class class wbr 4426   ran crn 4855   suc csuc 5444    Fn wfn 5596   -1-1->wf1 5598   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   omcom 6706  seq𝜔cseqom 7172    ^m cmap 7480    ~~ cen 7574   Fincfn 7577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-seqom 7173  df-1o 7190  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581
This theorem is referenced by:  fin23lem31  8771
  Copyright terms: Public domain W3C validator