MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem14 Structured version   Unicode version

Theorem fin23lem14 8494
Description: Lemma for fin23 8550. 
U will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
Assertion
Ref Expression
fin23lem14  |-  ( ( A  e.  om  /\  U.
ran  t  =/=  (/) )  -> 
( U `  A
)  =/=  (/) )
Distinct variable groups:    t, i, u    A, i, u    U, i, u
Allowed substitution hints:    A( t)    U( t)

Proof of Theorem fin23lem14
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5686 . . . . 5  |-  ( a  =  (/)  ->  ( U `
 a )  =  ( U `  (/) ) )
21neeq1d 2616 . . . 4  |-  ( a  =  (/)  ->  ( ( U `  a )  =/=  (/)  <->  ( U `  (/) )  =/=  (/) ) )
32imbi2d 316 . . 3  |-  ( a  =  (/)  ->  ( ( U. ran  t  =/=  (/)  ->  ( U `  a )  =/=  (/) )  <->  ( U. ran  t  =/=  (/)  ->  ( U `  (/) )  =/=  (/) ) ) )
4 fveq2 5686 . . . . 5  |-  ( a  =  b  ->  ( U `  a )  =  ( U `  b ) )
54neeq1d 2616 . . . 4  |-  ( a  =  b  ->  (
( U `  a
)  =/=  (/)  <->  ( U `  b )  =/=  (/) ) )
65imbi2d 316 . . 3  |-  ( a  =  b  ->  (
( U. ran  t  =/=  (/)  ->  ( U `  a )  =/=  (/) )  <->  ( U. ran  t  =/=  (/)  ->  ( U `  b )  =/=  (/) ) ) )
7 fveq2 5686 . . . . 5  |-  ( a  =  suc  b  -> 
( U `  a
)  =  ( U `
 suc  b )
)
87neeq1d 2616 . . . 4  |-  ( a  =  suc  b  -> 
( ( U `  a )  =/=  (/)  <->  ( U `  suc  b )  =/=  (/) ) )
98imbi2d 316 . . 3  |-  ( a  =  suc  b  -> 
( ( U. ran  t  =/=  (/)  ->  ( U `  a )  =/=  (/) )  <->  ( U. ran  t  =/=  (/)  ->  ( U `  suc  b )  =/=  (/) ) ) )
10 fveq2 5686 . . . . 5  |-  ( a  =  A  ->  ( U `  a )  =  ( U `  A ) )
1110neeq1d 2616 . . . 4  |-  ( a  =  A  ->  (
( U `  a
)  =/=  (/)  <->  ( U `  A )  =/=  (/) ) )
1211imbi2d 316 . . 3  |-  ( a  =  A  ->  (
( U. ran  t  =/=  (/)  ->  ( U `  a )  =/=  (/) )  <->  ( U. ran  t  =/=  (/)  ->  ( U `  A )  =/=  (/) ) ) )
13 vex 2970 . . . . . . 7  |-  t  e. 
_V
1413rnex 6507 . . . . . 6  |-  ran  t  e.  _V
1514uniex 6371 . . . . 5  |-  U. ran  t  e.  _V
16 fin23lem.a . . . . . 6  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
1716seqom0g 6903 . . . . 5  |-  ( U. ran  t  e.  _V  ->  ( U `  (/) )  = 
U. ran  t )
1815, 17mp1i 12 . . . 4  |-  ( U. ran  t  =/=  (/)  ->  ( U `  (/) )  = 
U. ran  t )
19 id 22 . . . 4  |-  ( U. ran  t  =/=  (/)  ->  U. ran  t  =/=  (/) )
2018, 19eqnetrd 2621 . . 3  |-  ( U. ran  t  =/=  (/)  ->  ( U `  (/) )  =/=  (/) )
2116fin23lem12 8492 . . . . . . 7  |-  ( b  e.  om  ->  ( U `  suc  b )  =  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) ) )
2221adantr 465 . . . . . 6  |-  ( ( b  e.  om  /\  ( U `  b )  =/=  (/) )  ->  ( U `  suc  b )  =  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) ) )
23 iftrue 3792 . . . . . . . . 9  |-  ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/)  ->  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) )  =  ( U `  b ) )
2423adantr 465 . . . . . . . 8  |-  ( ( ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  /\  (
b  e.  om  /\  ( U `  b )  =/=  (/) ) )  ->  if ( ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) ,  ( U `  b
) ,  ( ( t `  b )  i^i  ( U `  b ) ) )  =  ( U `  b ) )
25 simprr 756 . . . . . . . 8  |-  ( ( ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  /\  (
b  e.  om  /\  ( U `  b )  =/=  (/) ) )  -> 
( U `  b
)  =/=  (/) )
2624, 25eqnetrd 2621 . . . . . . 7  |-  ( ( ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  /\  (
b  e.  om  /\  ( U `  b )  =/=  (/) ) )  ->  if ( ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) ,  ( U `  b
) ,  ( ( t `  b )  i^i  ( U `  b ) ) )  =/=  (/) )
27 iffalse 3794 . . . . . . . . 9  |-  ( -.  ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  ->  if ( ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) ,  ( U `  b
) ,  ( ( t `  b )  i^i  ( U `  b ) ) )  =  ( ( t `
 b )  i^i  ( U `  b
) ) )
2827adantr 465 . . . . . . . 8  |-  ( ( -.  ( ( t `
 b )  i^i  ( U `  b
) )  =  (/)  /\  ( b  e.  om  /\  ( U `  b
)  =/=  (/) ) )  ->  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) )  =  ( ( t `
 b )  i^i  ( U `  b
) ) )
29 df-ne 2603 . . . . . . . . . 10  |-  ( ( ( t `  b
)  i^i  ( U `  b ) )  =/=  (/) 
<->  -.  ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) )
3029biimpri 206 . . . . . . . . 9  |-  ( -.  ( ( t `  b )  i^i  ( U `  b )
)  =  (/)  ->  (
( t `  b
)  i^i  ( U `  b ) )  =/=  (/) )
3130adantr 465 . . . . . . . 8  |-  ( ( -.  ( ( t `
 b )  i^i  ( U `  b
) )  =  (/)  /\  ( b  e.  om  /\  ( U `  b
)  =/=  (/) ) )  ->  ( ( t `
 b )  i^i  ( U `  b
) )  =/=  (/) )
3228, 31eqnetrd 2621 . . . . . . 7  |-  ( ( -.  ( ( t `
 b )  i^i  ( U `  b
) )  =  (/)  /\  ( b  e.  om  /\  ( U `  b
)  =/=  (/) ) )  ->  if ( ( ( t `  b
)  i^i  ( U `  b ) )  =  (/) ,  ( U `  b ) ,  ( ( t `  b
)  i^i  ( U `  b ) ) )  =/=  (/) )
3326, 32pm2.61ian 788 . . . . . 6  |-  ( ( b  e.  om  /\  ( U `  b )  =/=  (/) )  ->  if ( ( ( t `
 b )  i^i  ( U `  b
) )  =  (/) ,  ( U `  b
) ,  ( ( t `  b )  i^i  ( U `  b ) ) )  =/=  (/) )
3422, 33eqnetrd 2621 . . . . 5  |-  ( ( b  e.  om  /\  ( U `  b )  =/=  (/) )  ->  ( U `  suc  b )  =/=  (/) )
3534ex 434 . . . 4  |-  ( b  e.  om  ->  (
( U `  b
)  =/=  (/)  ->  ( U `  suc  b )  =/=  (/) ) )
3635imim2d 52 . . 3  |-  ( b  e.  om  ->  (
( U. ran  t  =/=  (/)  ->  ( U `  b )  =/=  (/) )  -> 
( U. ran  t  =/=  (/)  ->  ( U `  suc  b )  =/=  (/) ) ) )
373, 6, 9, 12, 20, 36finds 6497 . 2  |-  ( A  e.  om  ->  ( U. ran  t  =/=  (/)  ->  ( U `  A )  =/=  (/) ) )
3837imp 429 1  |-  ( ( A  e.  om  /\  U.
ran  t  =/=  (/) )  -> 
( U `  A
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   _Vcvv 2967    i^i cin 3322   (/)c0 3632   ifcif 3786   U.cuni 4086   suc csuc 4716   ran crn 4836   ` cfv 5413    e. cmpt2 6088   omcom 6471  seq𝜔cseqom 6894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-seqom 6895
This theorem is referenced by:  fin23lem21  8500
  Copyright terms: Public domain W3C validator