MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem12 Structured version   Visualization version   Unicode version

Theorem fin23lem12 8779
Description: The beginning of the proof that every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets).

This first section is dedicated to the construction of  U and its intersection. First, the value of  U at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.)

Hypothesis
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
Assertion
Ref Expression
fin23lem12  |-  ( A  e.  om  ->  ( U `  suc  A )  =  if ( ( ( t `  A
)  i^i  ( U `  A ) )  =  (/) ,  ( U `  A ) ,  ( ( t `  A
)  i^i  ( U `  A ) ) ) )
Distinct variable groups:    t, i, u    A, i, u    U, i, u
Allowed substitution hints:    A( t)    U( t)

Proof of Theorem fin23lem12
StepHypRef Expression
1 fin23lem.a . . 3  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
21seqomsuc 7192 . 2  |-  ( A  e.  om  ->  ( U `  suc  A )  =  ( A ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `  i )  i^i  u
)  =  (/) ,  u ,  ( ( t `
 i )  i^i  u ) ) ) ( U `  A
) ) )
3 fvex 5889 . . 3  |-  ( U `
 A )  e. 
_V
4 fveq2 5879 . . . . . . 7  |-  ( i  =  A  ->  (
t `  i )  =  ( t `  A ) )
54ineq1d 3624 . . . . . 6  |-  ( i  =  A  ->  (
( t `  i
)  i^i  u )  =  ( ( t `
 A )  i^i  u ) )
65eqeq1d 2473 . . . . 5  |-  ( i  =  A  ->  (
( ( t `  i )  i^i  u
)  =  (/)  <->  ( (
t `  A )  i^i  u )  =  (/) ) )
76, 5ifbieq2d 3897 . . . 4  |-  ( i  =  A  ->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) )  =  if ( ( ( t `  A
)  i^i  u )  =  (/) ,  u ,  ( ( t `  A )  i^i  u
) ) )
8 ineq2 3619 . . . . . 6  |-  ( u  =  ( U `  A )  ->  (
( t `  A
)  i^i  u )  =  ( ( t `
 A )  i^i  ( U `  A
) ) )
98eqeq1d 2473 . . . . 5  |-  ( u  =  ( U `  A )  ->  (
( ( t `  A )  i^i  u
)  =  (/)  <->  ( (
t `  A )  i^i  ( U `  A
) )  =  (/) ) )
10 id 22 . . . . 5  |-  ( u  =  ( U `  A )  ->  u  =  ( U `  A ) )
119, 10, 8ifbieq12d 3899 . . . 4  |-  ( u  =  ( U `  A )  ->  if ( ( ( t `
 A )  i^i  u )  =  (/) ,  u ,  ( ( t `  A )  i^i  u ) )  =  if ( ( ( t `  A
)  i^i  ( U `  A ) )  =  (/) ,  ( U `  A ) ,  ( ( t `  A
)  i^i  ( U `  A ) ) ) )
12 eqid 2471 . . . 4  |-  ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `  i
)  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u
) ) )  =  ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) )
133inex2 4538 . . . . 5  |-  ( ( t `  A )  i^i  ( U `  A ) )  e. 
_V
143, 13ifex 3940 . . . 4  |-  if ( ( ( t `  A )  i^i  ( U `  A )
)  =  (/) ,  ( U `  A ) ,  ( ( t `
 A )  i^i  ( U `  A
) ) )  e. 
_V
157, 11, 12, 14ovmpt2 6451 . . 3  |-  ( ( A  e.  om  /\  ( U `  A )  e.  _V )  -> 
( A ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `  i
)  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u
) ) ) ( U `  A ) )  =  if ( ( ( t `  A )  i^i  ( U `  A )
)  =  (/) ,  ( U `  A ) ,  ( ( t `
 A )  i^i  ( U `  A
) ) ) )
163, 15mpan2 685 . 2  |-  ( A  e.  om  ->  ( A ( i  e. 
om ,  u  e. 
_V  |->  if ( ( ( t `  i
)  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u
) ) ) ( U `  A ) )  =  if ( ( ( t `  A )  i^i  ( U `  A )
)  =  (/) ,  ( U `  A ) ,  ( ( t `
 A )  i^i  ( U `  A
) ) ) )
172, 16eqtrd 2505 1  |-  ( A  e.  om  ->  ( U `  suc  A )  =  if ( ( ( t `  A
)  i^i  ( U `  A ) )  =  (/) ,  ( U `  A ) ,  ( ( t `  A
)  i^i  ( U `  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1452    e. wcel 1904   _Vcvv 3031    i^i cin 3389   (/)c0 3722   ifcif 3872   U.cuni 4190   ran crn 4840   suc csuc 5432   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   omcom 6711  seq𝜔cseqom 7182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-seqom 7183
This theorem is referenced by:  fin23lem13  8780  fin23lem14  8781  fin23lem19  8784
  Copyright terms: Public domain W3C validator