MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2s Structured version   Unicode version

Theorem fin1a2s 8697
Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2s  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  ->  A  e. FinII )
Distinct variable groups:    x, A    x, V

Proof of Theorem fin1a2s
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 elpwi 3980 . . . 4  |-  ( c  e.  ~P ~P A  ->  c  C_  ~P A
)
2 fin12 8696 . . . . . . . . . . 11  |-  ( x  e.  Fin  ->  x  e. FinII
)
3 fin23 8672 . . . . . . . . . . 11  |-  ( x  e. FinII  ->  x  e. FinIII )
42, 3syl 16 . . . . . . . . . 10  |-  ( x  e.  Fin  ->  x  e. FinIII )
5 fin23 8672 . . . . . . . . . 10  |-  ( ( A  \  x )  e. FinII  ->  ( A  \  x )  e. FinIII )
64, 5orim12i 516 . . . . . . . . 9  |-  ( ( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  (
x  e. FinIII  \/  ( A  \  x )  e. FinIII ) )
76ralimi 2819 . . . . . . . 8  |-  ( A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  A. x  e.  ~P  A ( x  e. FinIII  \/  ( A  \  x )  e. FinIII ) )
8 fin1a2lem8 8690 . . . . . . . 8  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e. FinIII  \/  ( A  \  x )  e. FinIII ) )  ->  A  e. FinIII )
97, 8sylan2 474 . . . . . . 7  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  ->  A  e. FinIII )
109adantr 465 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e. FinII ) )  /\  ( c  C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  ->  A  e. FinIII )
11 simplrl 759 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  c  C_ 
~P A )
12 simprrr 764 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  -> [ C.]  Or  c )
1312adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  -> [ C.]  Or  c )
14 simprl 755 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  -.  U. c  e.  c )
15 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  c  C_  ~P A )
16 ssralv 3527 . . . . . . . . . . . . . 14  |-  ( c 
C_  ~P A  ->  ( A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e. FinII )  ->  A. x  e.  c 
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) ) )
1715, 16syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  A. x  e.  c  ( x  e.  Fin  \/  ( A 
\  x )  e. FinII ) ) )
18 idd 24 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  x  e.  c )  ->  (
x  e.  Fin  ->  x  e.  Fin ) )
19 fin1a2lem13 8695 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( c  C_  ~P A  /\ [ C.]  Or  c  /\  -.  U. c  e.  c )  /\  ( -.  x  e.  Fin  /\  x  e.  c ) )  ->  -.  ( A  \  x )  e. FinII )
2019ex 434 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( c  C_  ~P A  /\ [ C.]  Or  c  /\  -.  U. c  e.  c )  ->  ( ( -.  x  e.  Fin  /\  x  e.  c )  ->  -.  ( A  \  x )  e. FinII ) )
21203expa 1188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( c  C_  ~P A  /\ [ C.]  Or  c
)  /\  -.  U. c  e.  c )  ->  (
( -.  x  e. 
Fin  /\  x  e.  c )  ->  -.  ( A  \  x
)  e. FinII ) )
2221adantlrl 719 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) )  /\  -.  U. c  e.  c )  ->  ( ( -.  x  e.  Fin  /\  x  e.  c )  ->  -.  ( A  \  x )  e. FinII ) )
2322adantll 713 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( ( -.  x  e.  Fin  /\  x  e.  c )  ->  -.  ( A  \  x )  e. FinII ) )
2423imp 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  ( -.  x  e.  Fin  /\  x  e.  c ) )  ->  -.  ( A  \  x )  e. FinII )
2524ancom2s 800 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  (
x  e.  c  /\  -.  x  e.  Fin ) )  ->  -.  ( A  \  x
)  e. FinII )
2625expr 615 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  x  e.  c )  ->  ( -.  x  e.  Fin  ->  -.  ( A  \  x )  e. FinII ) )
2726con4d 105 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  x  e.  c )  ->  (
( A  \  x
)  e. FinII  ->  x  e.  Fin ) )
2818, 27jaod 380 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  V  /\  ( c 
C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  /\  -.  U. c  e.  c )  /\  x  e.  c )  ->  (
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  x  e.  Fin ) )
2928ralimdva 2832 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( A. x  e.  c  (
x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  A. x  e.  c  x  e.  Fin ) )
3017, 29syld 44 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  A. x  e.  c  x  e.  Fin ) )
3130impr 619 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  A. x  e.  c  x  e.  Fin )
32 dfss3 3457 . . . . . . . . . . 11  |-  ( c 
C_  Fin  <->  A. x  e.  c  x  e.  Fin )
3331, 32sylibr 212 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  c  C_ 
Fin )
34 simprrl 763 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  -> 
c  =/=  (/) )
3534adantr 465 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  c  =/=  (/) )
36 fin1a2lem12 8694 . . . . . . . . . 10  |-  ( ( ( c  C_  ~P A  /\ [ C.]  Or  c  /\  -.  U. c  e.  c )  /\  (
c  C_  Fin  /\  c  =/=  (/) ) )  ->  -.  A  e. FinIII )
3711, 13, 14, 33, 35, 36syl32anc 1227 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  ( -.  U. c  e.  c  /\  A. x  e.  ~P  A ( x  e.  Fin  \/  ( A  \  x )  e. FinII ) ) )  ->  -.  A  e. FinIII )
3837expr 615 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  -.  U. c  e.  c )  ->  ( A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII )  ->  -.  A  e. FinIII ) )
3938impancom 440 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( c  C_  ~P A  /\  ( c  =/=  (/)  /\ [ C.]  Or  c
) ) )  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  -> 
( -.  U. c  e.  c  ->  -.  A  e. FinIII ) )
4039an32s 802 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e. FinII ) )  /\  ( c  C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  ->  ( -.  U. c  e.  c  ->  -.  A  e. FinIII ) )
4110, 40mt4d 138 . . . . 5  |-  ( ( ( A  e.  V  /\  A. x  e.  ~P  A ( x  e. 
Fin  \/  ( A  \  x )  e. FinII ) )  /\  ( c  C_  ~P A  /\  (
c  =/=  (/)  /\ [ C.]  Or  c ) ) )  ->  U. c  e.  c )
4241exp32 605 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  -> 
( c  C_  ~P A  ->  ( ( c  =/=  (/)  /\ [ C.]  Or  c
)  ->  U. c  e.  c ) ) )
431, 42syl5 32 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  -> 
( c  e.  ~P ~P A  ->  ( ( c  =/=  (/)  /\ [ C.]  Or  c )  ->  U. c  e.  c ) ) )
4443ralrimiv 2828 . 2  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  ->  A. c  e.  ~P  ~P A ( ( c  =/=  (/)  /\ [ C.]  Or  c
)  ->  U. c  e.  c ) )
45 isfin2 8577 . . 3  |-  ( A  e.  V  ->  ( A  e. FinII 
<-> 
A. c  e.  ~P  ~P A ( ( c  =/=  (/)  /\ [ C.]  Or  c
)  ->  U. c  e.  c ) ) )
4645adantr 465 . 2  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  -> 
( A  e. FinII  <->  A. c  e.  ~P  ~P A ( ( c  =/=  (/)  /\ [ C.]  Or  c )  ->  U. c  e.  c ) ) )
4744, 46mpbird 232 1  |-  ( ( A  e.  V  /\  A. x  e.  ~P  A
( x  e.  Fin  \/  ( A  \  x
)  e. FinII ) )  ->  A  e. FinII )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    e. wcel 1758    =/= wne 2648   A.wral 2799    \ cdif 3436    C_ wss 3439   (/)c0 3748   ~Pcpw 3971   U.cuni 4202    Or wor 4751   [ C.] crpss 6472   Fincfn 7423  FinIIcfin2 8562  FinIIIcfin3 8564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-rpss 6473  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-seqom 7016  df-1o 7033  df-2o 7034  df-oadd 7037  df-omul 7038  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-wdom 7888  df-card 8223  df-fin2 8569  df-fin4 8570  df-fin3 8571
This theorem is referenced by:  fin1a2  8698
  Copyright terms: Public domain W3C validator