MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem9 Structured version   Unicode version

Theorem fin1a2lem9 8784
Description: Lemma for fin1a2 8791. In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem9  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  { b  e.  X  |  b  ~<_  A }  e.  Fin )
Distinct variable groups:    A, b    X, b

Proof of Theorem fin1a2lem9
Dummy variables  c 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfin2 7706 . . . . 5  |-  om  =  ( On  i^i  Fin )
2 inss2 3719 . . . . 5  |-  ( On 
i^i  Fin )  C_  Fin
31, 2eqsstri 3534 . . . 4  |-  om  C_  Fin
4 peano2 6698 . . . 4  |-  ( A  e.  om  ->  suc  A  e.  om )
53, 4sseldi 3502 . . 3  |-  ( A  e.  om  ->  suc  A  e.  Fin )
653ad2ant3 1019 . 2  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  suc  A  e.  Fin )
743ad2ant3 1019 . . 3  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  suc  A  e.  om )
8 breq1 4450 . . . . . 6  |-  ( b  =  c  ->  (
b  ~<_  A  <->  c  ~<_  A ) )
98elrab 3261 . . . . 5  |-  ( c  e.  { b  e.  X  |  b  ~<_  A }  <->  ( c  e.  X  /\  c  ~<_  A ) )
10 simprr 756 . . . . . . . 8  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  c  ~<_  A )
11 simpl2 1000 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  X  C_  Fin )
12 simprl 755 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  c  e.  X )
1311, 12sseldd 3505 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  c  e.  Fin )
14 finnum 8325 . . . . . . . . . 10  |-  ( c  e.  Fin  ->  c  e.  dom  card )
1513, 14syl 16 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  c  e.  dom  card )
16 simpl3 1001 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  A  e.  om )
173, 16sseldi 3502 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  A  e.  Fin )
18 finnum 8325 . . . . . . . . . 10  |-  ( A  e.  Fin  ->  A  e.  dom  card )
1917, 18syl 16 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  A  e.  dom  card )
20 carddom2 8354 . . . . . . . . 9  |-  ( ( c  e.  dom  card  /\  A  e.  dom  card )  ->  ( ( card `  c )  C_  ( card `  A )  <->  c  ~<_  A ) )
2115, 19, 20syl2anc 661 . . . . . . . 8  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  ( ( card `  c )  C_  ( card `  A )  <->  c  ~<_  A ) )
2210, 21mpbird 232 . . . . . . 7  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  c  ~<_  A )
)  ->  ( card `  c )  C_  ( card `  A ) )
2322ex 434 . . . . . 6  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  (
( c  e.  X  /\  c  ~<_  A )  ->  ( card `  c
)  C_  ( card `  A ) ) )
24 cardnn 8340 . . . . . . . . 9  |-  ( A  e.  om  ->  ( card `  A )  =  A )
2524sseq2d 3532 . . . . . . . 8  |-  ( A  e.  om  ->  (
( card `  c )  C_  ( card `  A
)  <->  ( card `  c
)  C_  A )
)
26 cardon 8321 . . . . . . . . 9  |-  ( card `  c )  e.  On
27 nnon 6684 . . . . . . . . 9  |-  ( A  e.  om  ->  A  e.  On )
28 onsssuc 4965 . . . . . . . . 9  |-  ( ( ( card `  c
)  e.  On  /\  A  e.  On )  ->  ( ( card `  c
)  C_  A  <->  ( card `  c )  e.  suc  A ) )
2926, 27, 28sylancr 663 . . . . . . . 8  |-  ( A  e.  om  ->  (
( card `  c )  C_  A  <->  ( card `  c
)  e.  suc  A
) )
3025, 29bitrd 253 . . . . . . 7  |-  ( A  e.  om  ->  (
( card `  c )  C_  ( card `  A
)  <->  ( card `  c
)  e.  suc  A
) )
31303ad2ant3 1019 . . . . . 6  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  (
( card `  c )  C_  ( card `  A
)  <->  ( card `  c
)  e.  suc  A
) )
3223, 31sylibd 214 . . . . 5  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  (
( c  e.  X  /\  c  ~<_  A )  ->  ( card `  c
)  e.  suc  A
) )
339, 32syl5bi 217 . . . 4  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  (
c  e.  { b  e.  X  |  b  ~<_  A }  ->  ( card `  c )  e. 
suc  A ) )
34 elrabi 3258 . . . . 5  |-  ( c  e.  { b  e.  X  |  b  ~<_  A }  ->  c  e.  X )
35 elrabi 3258 . . . . 5  |-  ( d  e.  { b  e.  X  |  b  ~<_  A }  ->  d  e.  X )
36 ssel 3498 . . . . . . . . . . 11  |-  ( X 
C_  Fin  ->  ( c  e.  X  ->  c  e.  Fin ) )
37 ssel 3498 . . . . . . . . . . 11  |-  ( X 
C_  Fin  ->  ( d  e.  X  ->  d  e.  Fin ) )
3836, 37anim12d 563 . . . . . . . . . 10  |-  ( X 
C_  Fin  ->  ( ( c  e.  X  /\  d  e.  X )  ->  ( c  e.  Fin  /\  d  e.  Fin )
) )
3938imp 429 . . . . . . . . 9  |-  ( ( X  C_  Fin  /\  (
c  e.  X  /\  d  e.  X )
)  ->  ( c  e.  Fin  /\  d  e. 
Fin ) )
40393ad2antl2 1159 . . . . . . . 8  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
c  e.  Fin  /\  d  e.  Fin )
)
41 sorpssi 6568 . . . . . . . . 9  |-  ( ( [
C.]  Or  X  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
c  C_  d  \/  d  C_  c ) )
42413ad2antl1 1158 . . . . . . . 8  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
c  C_  d  \/  d  C_  c ) )
43 finnum 8325 . . . . . . . . . . 11  |-  ( d  e.  Fin  ->  d  e.  dom  card )
44 carden2 8364 . . . . . . . . . . 11  |-  ( ( c  e.  dom  card  /\  d  e.  dom  card )  ->  ( ( card `  c )  =  (
card `  d )  <->  c 
~~  d ) )
4514, 43, 44syl2an 477 . . . . . . . . . 10  |-  ( ( c  e.  Fin  /\  d  e.  Fin )  ->  ( ( card `  c
)  =  ( card `  d )  <->  c  ~~  d ) )
4645adantr 465 . . . . . . . . 9  |-  ( ( ( c  e.  Fin  /\  d  e.  Fin )  /\  ( c  C_  d  \/  d  C_  c ) )  ->  ( ( card `  c )  =  ( card `  d
)  <->  c  ~~  d
) )
47 fin23lem25 8700 . . . . . . . . . . 11  |-  ( ( c  e.  Fin  /\  d  e.  Fin  /\  (
c  C_  d  \/  d  C_  c ) )  ->  ( c  ~~  d 
<->  c  =  d ) )
48473expa 1196 . . . . . . . . . 10  |-  ( ( ( c  e.  Fin  /\  d  e.  Fin )  /\  ( c  C_  d  \/  d  C_  c ) )  ->  ( c  ~~  d  <->  c  =  d ) )
4948biimpd 207 . . . . . . . . 9  |-  ( ( ( c  e.  Fin  /\  d  e.  Fin )  /\  ( c  C_  d  \/  d  C_  c ) )  ->  ( c  ~~  d  ->  c  =  d ) )
5046, 49sylbid 215 . . . . . . . 8  |-  ( ( ( c  e.  Fin  /\  d  e.  Fin )  /\  ( c  C_  d  \/  d  C_  c ) )  ->  ( ( card `  c )  =  ( card `  d
)  ->  c  =  d ) )
5140, 42, 50syl2anc 661 . . . . . . 7  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
( card `  c )  =  ( card `  d
)  ->  c  =  d ) )
52 fveq2 5864 . . . . . . 7  |-  ( c  =  d  ->  ( card `  c )  =  ( card `  d
) )
5351, 52impbid1 203 . . . . . 6  |-  ( ( ( [ C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  /\  ( c  e.  X  /\  d  e.  X
) )  ->  (
( card `  c )  =  ( card `  d
)  <->  c  =  d ) )
5453ex 434 . . . . 5  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  (
( c  e.  X  /\  d  e.  X
)  ->  ( ( card `  c )  =  ( card `  d
)  <->  c  =  d ) ) )
5534, 35, 54syl2ani 656 . . . 4  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  (
( c  e.  {
b  e.  X  | 
b  ~<_  A }  /\  d  e.  { b  e.  X  |  b  ~<_  A } )  ->  (
( card `  c )  =  ( card `  d
)  <->  c  =  d ) ) )
5633, 55dom2d 7553 . . 3  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  ( suc  A  e.  om  ->  { b  e.  X  | 
b  ~<_  A }  ~<_  suc  A
) )
577, 56mpd 15 . 2  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  { b  e.  X  |  b  ~<_  A }  ~<_  suc  A
)
58 domfi 7738 . 2  |-  ( ( suc  A  e.  Fin  /\ 
{ b  e.  X  |  b  ~<_  A }  ~<_  suc  A )  ->  { b  e.  X  |  b  ~<_  A }  e.  Fin )
596, 57, 58syl2anc 661 1  |-  ( ( [
C.]  Or  X  /\  X  C_  Fin  /\  A  e.  om )  ->  { b  e.  X  |  b  ~<_  A }  e.  Fin )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {crab 2818    i^i cin 3475    C_ wss 3476   class class class wbr 4447    Or wor 4799   Oncon0 4878   suc csuc 4880   dom cdm 4999   ` cfv 5586   [ C.] crpss 6561   omcom 6678    ~~ cen 7510    ~<_ cdom 7511   Fincfn 7513   cardccrd 8312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-rpss 6562  df-om 6679  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-card 8316
This theorem is referenced by:  fin1a2lem11  8786
  Copyright terms: Public domain W3C validator