MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem6 Structured version   Unicode version

Theorem fin1a2lem6 8774
Description: Lemma for fin1a2 8784. Establish that  om can be broken into two equipollent pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
fin1a2lem.aa  |-  S  =  ( x  e.  On  |->  suc  x )
Assertion
Ref Expression
fin1a2lem6  |-  ( S  |`  ran  E ) : ran  E -1-1-onto-> ( om  \  ran  E )

Proof of Theorem fin1a2lem6
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.aa . . . 4  |-  S  =  ( x  e.  On  |->  suc  x )
21fin1a2lem2 8770 . . 3  |-  S : On
-1-1-> On
3 fin1a2lem.b . . . . 5  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
43fin1a2lem4 8772 . . . 4  |-  E : om
-1-1-> om
5 f1f 5772 . . . 4  |-  ( E : om -1-1-> om  ->  E : om --> om )
6 frn 5728 . . . . 5  |-  ( E : om --> om  ->  ran 
E  C_  om )
7 omsson 6675 . . . . 5  |-  om  C_  On
86, 7syl6ss 3509 . . . 4  |-  ( E : om --> om  ->  ran 
E  C_  On )
94, 5, 8mp2b 10 . . 3  |-  ran  E  C_  On
10 f1ores 5821 . . 3  |-  ( ( S : On -1-1-> On  /\ 
ran  E  C_  On )  ->  ( S  |`  ran  E ) : ran  E -1-1-onto-> ( S " ran  E
) )
112, 9, 10mp2an 672 . 2  |-  ( S  |`  ran  E ) : ran  E -1-1-onto-> ( S " ran  E )
129sseli 3493 . . . . . . . . 9  |-  ( b  e.  ran  E  -> 
b  e.  On )
131fin1a2lem1 8769 . . . . . . . . 9  |-  ( b  e.  On  ->  ( S `  b )  =  suc  b )
1412, 13syl 16 . . . . . . . 8  |-  ( b  e.  ran  E  -> 
( S `  b
)  =  suc  b
)
1514eqeq1d 2462 . . . . . . 7  |-  ( b  e.  ran  E  -> 
( ( S `  b )  =  a  <->  suc  b  =  a
) )
1615rexbiia 2957 . . . . . 6  |-  ( E. b  e.  ran  E
( S `  b
)  =  a  <->  E. b  e.  ran  E  suc  b  =  a )
174, 5, 6mp2b 10 . . . . . . . . . . . 12  |-  ran  E  C_ 
om
1817sseli 3493 . . . . . . . . . . 11  |-  ( b  e.  ran  E  -> 
b  e.  om )
19 peano2 6691 . . . . . . . . . . 11  |-  ( b  e.  om  ->  suc  b  e.  om )
2018, 19syl 16 . . . . . . . . . 10  |-  ( b  e.  ran  E  ->  suc  b  e.  om )
213fin1a2lem5 8773 . . . . . . . . . . . 12  |-  ( b  e.  om  ->  (
b  e.  ran  E  <->  -. 
suc  b  e.  ran  E ) )
2221biimpd 207 . . . . . . . . . . 11  |-  ( b  e.  om  ->  (
b  e.  ran  E  ->  -.  suc  b  e. 
ran  E ) )
2318, 22mpcom 36 . . . . . . . . . 10  |-  ( b  e.  ran  E  ->  -.  suc  b  e.  ran  E )
2420, 23jca 532 . . . . . . . . 9  |-  ( b  e.  ran  E  -> 
( suc  b  e.  om 
/\  -.  suc  b  e. 
ran  E ) )
25 eleq1 2532 . . . . . . . . . 10  |-  ( suc  b  =  a  -> 
( suc  b  e.  om  <->  a  e.  om ) )
26 eleq1 2532 . . . . . . . . . . 11  |-  ( suc  b  =  a  -> 
( suc  b  e.  ran  E  <->  a  e.  ran  E ) )
2726notbid 294 . . . . . . . . . 10  |-  ( suc  b  =  a  -> 
( -.  suc  b  e.  ran  E  <->  -.  a  e.  ran  E ) )
2825, 27anbi12d 710 . . . . . . . . 9  |-  ( suc  b  =  a  -> 
( ( suc  b  e.  om  /\  -.  suc  b  e.  ran  E )  <-> 
( a  e.  om  /\ 
-.  a  e.  ran  E ) ) )
2924, 28syl5ibcom 220 . . . . . . . 8  |-  ( b  e.  ran  E  -> 
( suc  b  =  a  ->  ( a  e. 
om  /\  -.  a  e.  ran  E ) ) )
3029rexlimiv 2942 . . . . . . 7  |-  ( E. b  e.  ran  E  suc  b  =  a  ->  ( a  e.  om  /\ 
-.  a  e.  ran  E ) )
31 peano1 6690 . . . . . . . . . . . . . 14  |-  (/)  e.  om
323fin1a2lem3 8771 . . . . . . . . . . . . . 14  |-  ( (/)  e.  om  ->  ( E `  (/) )  =  ( 2o  .o  (/) ) )
3331, 32ax-mp 5 . . . . . . . . . . . . 13  |-  ( E `
 (/) )  =  ( 2o  .o  (/) )
34 om0x 7159 . . . . . . . . . . . . 13  |-  ( 2o 
.o  (/) )  =  (/)
3533, 34eqtri 2489 . . . . . . . . . . . 12  |-  ( E `
 (/) )  =  (/)
36 f1fun 5774 . . . . . . . . . . . . . 14  |-  ( E : om -1-1-> om  ->  Fun 
E )
374, 36ax-mp 5 . . . . . . . . . . . . 13  |-  Fun  E
38 f1dm 5776 . . . . . . . . . . . . . . 15  |-  ( E : om -1-1-> om  ->  dom 
E  =  om )
394, 38ax-mp 5 . . . . . . . . . . . . . 14  |-  dom  E  =  om
4031, 39eleqtrri 2547 . . . . . . . . . . . . 13  |-  (/)  e.  dom  E
41 fvelrn 6008 . . . . . . . . . . . . 13  |-  ( ( Fun  E  /\  (/)  e.  dom  E )  ->  ( E `  (/) )  e.  ran  E )
4237, 40, 41mp2an 672 . . . . . . . . . . . 12  |-  ( E `
 (/) )  e.  ran  E
4335, 42eqeltrri 2545 . . . . . . . . . . 11  |-  (/)  e.  ran  E
44 eleq1 2532 . . . . . . . . . . 11  |-  ( a  =  (/)  ->  ( a  e.  ran  E  <->  (/)  e.  ran  E ) )
4543, 44mpbiri 233 . . . . . . . . . 10  |-  ( a  =  (/)  ->  a  e. 
ran  E )
4645necon3bi 2689 . . . . . . . . 9  |-  ( -.  a  e.  ran  E  ->  a  =/=  (/) )
47 nnsuc 6688 . . . . . . . . 9  |-  ( ( a  e.  om  /\  a  =/=  (/) )  ->  E. b  e.  om  a  =  suc  b )
4846, 47sylan2 474 . . . . . . . 8  |-  ( ( a  e.  om  /\  -.  a  e.  ran  E )  ->  E. b  e.  om  a  =  suc  b )
49 eleq1 2532 . . . . . . . . . . . . . . . 16  |-  ( a  =  suc  b  -> 
( a  e.  om  <->  suc  b  e.  om )
)
50 eleq1 2532 . . . . . . . . . . . . . . . . 17  |-  ( a  =  suc  b  -> 
( a  e.  ran  E  <->  suc  b  e.  ran  E ) )
5150notbid 294 . . . . . . . . . . . . . . . 16  |-  ( a  =  suc  b  -> 
( -.  a  e. 
ran  E  <->  -.  suc  b  e. 
ran  E ) )
5249, 51anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( a  =  suc  b  -> 
( ( a  e. 
om  /\  -.  a  e.  ran  E )  <->  ( suc  b  e.  om  /\  -.  suc  b  e.  ran  E ) ) )
5352anbi1d 704 . . . . . . . . . . . . . 14  |-  ( a  =  suc  b  -> 
( ( ( a  e.  om  /\  -.  a  e.  ran  E )  /\  b  e.  om ) 
<->  ( ( suc  b  e.  om  /\  -.  suc  b  e.  ran  E )  /\  b  e.  om ) ) )
54 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( suc  b  e. 
om  /\  -.  suc  b  e.  ran  E )  /\  b  e.  om )  ->  -.  suc  b  e. 
ran  E )
5521adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( suc  b  e. 
om  /\  -.  suc  b  e.  ran  E )  /\  b  e.  om )  ->  ( b  e.  ran  E  <->  -.  suc  b  e.  ran  E ) )
5654, 55mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( suc  b  e. 
om  /\  -.  suc  b  e.  ran  E )  /\  b  e.  om )  ->  b  e.  ran  E
)
5753, 56syl6bi 228 . . . . . . . . . . . . 13  |-  ( a  =  suc  b  -> 
( ( ( a  e.  om  /\  -.  a  e.  ran  E )  /\  b  e.  om )  ->  b  e.  ran  E ) )
5857com12 31 . . . . . . . . . . . 12  |-  ( ( ( a  e.  om  /\ 
-.  a  e.  ran  E )  /\  b  e. 
om )  ->  (
a  =  suc  b  ->  b  e.  ran  E
) )
5958impr 619 . . . . . . . . . . 11  |-  ( ( ( a  e.  om  /\ 
-.  a  e.  ran  E )  /\  ( b  e.  om  /\  a  =  suc  b ) )  ->  b  e.  ran  E )
60 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( a  e.  om  /\ 
-.  a  e.  ran  E )  /\  ( b  e.  om  /\  a  =  suc  b ) )  ->  a  =  suc  b )
6160eqcomd 2468 . . . . . . . . . . 11  |-  ( ( ( a  e.  om  /\ 
-.  a  e.  ran  E )  /\  ( b  e.  om  /\  a  =  suc  b ) )  ->  suc  b  =  a )
6259, 61jca 532 . . . . . . . . . 10  |-  ( ( ( a  e.  om  /\ 
-.  a  e.  ran  E )  /\  ( b  e.  om  /\  a  =  suc  b ) )  ->  ( b  e. 
ran  E  /\  suc  b  =  a ) )
6362ex 434 . . . . . . . . 9  |-  ( ( a  e.  om  /\  -.  a  e.  ran  E )  ->  ( (
b  e.  om  /\  a  =  suc  b )  ->  ( b  e. 
ran  E  /\  suc  b  =  a ) ) )
6463reximdv2 2927 . . . . . . . 8  |-  ( ( a  e.  om  /\  -.  a  e.  ran  E )  ->  ( E. b  e.  om  a  =  suc  b  ->  E. b  e.  ran  E  suc  b  =  a ) )
6548, 64mpd 15 . . . . . . 7  |-  ( ( a  e.  om  /\  -.  a  e.  ran  E )  ->  E. b  e.  ran  E  suc  b  =  a )
6630, 65impbii 188 . . . . . 6  |-  ( E. b  e.  ran  E  suc  b  =  a  <->  ( a  e.  om  /\  -.  a  e.  ran  E ) )
6716, 66bitri 249 . . . . 5  |-  ( E. b  e.  ran  E
( S `  b
)  =  a  <->  ( a  e.  om  /\  -.  a  e.  ran  E ) )
68 f1fn 5773 . . . . . . 7  |-  ( S : On -1-1-> On  ->  S  Fn  On )
692, 68ax-mp 5 . . . . . 6  |-  S  Fn  On
70 fvelimab 5914 . . . . . 6  |-  ( ( S  Fn  On  /\  ran  E  C_  On )  ->  ( a  e.  ( S " ran  E
)  <->  E. b  e.  ran  E ( S `  b
)  =  a ) )
7169, 9, 70mp2an 672 . . . . 5  |-  ( a  e.  ( S " ran  E )  <->  E. b  e.  ran  E ( S `
 b )  =  a )
72 eldif 3479 . . . . 5  |-  ( a  e.  ( om  \  ran  E )  <->  ( a  e. 
om  /\  -.  a  e.  ran  E ) )
7367, 71, 723bitr4i 277 . . . 4  |-  ( a  e.  ( S " ran  E )  <->  a  e.  ( om  \  ran  E
) )
7473eqriv 2456 . . 3  |-  ( S
" ran  E )  =  ( om  \  ran  E )
75 f1oeq3 5800 . . 3  |-  ( ( S " ran  E
)  =  ( om 
\  ran  E )  ->  ( ( S  |`  ran  E ) : ran  E -1-1-onto-> ( S " ran  E
)  <->  ( S  |`  ran  E ) : ran  E -1-1-onto-> ( om  \  ran  E
) ) )
7674, 75ax-mp 5 . 2  |-  ( ( S  |`  ran  E ) : ran  E -1-1-onto-> ( S
" ran  E )  <->  ( S  |`  ran  E ) : ran  E -1-1-onto-> ( om 
\  ran  E )
)
7711, 76mpbi 208 1  |-  ( S  |`  ran  E ) : ran  E -1-1-onto-> ( om  \  ran  E )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   E.wrex 2808    \ cdif 3466    C_ wss 3469   (/)c0 3778    |-> cmpt 4498   Oncon0 4871   suc csuc 4873   dom cdm 4992   ran crn 4993    |` cres 4994   "cima 4995   Fun wfun 5573    Fn wfn 5574   -->wf 5575   -1-1->wf1 5576   -1-1-onto->wf1o 5578   ` cfv 5579  (class class class)co 6275   omcom 6671   2oc2o 7114    .o comu 7118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-omul 7125
This theorem is referenced by:  fin1a2lem7  8775
  Copyright terms: Public domain W3C validator