MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem4 Structured version   Unicode version

Theorem fin1a2lem4 8584
Description: Lemma for fin1a2 8596. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.b  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
Assertion
Ref Expression
fin1a2lem4  |-  E : om
-1-1-> om

Proof of Theorem fin1a2lem4
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.b . . 3  |-  E  =  ( x  e.  om  |->  ( 2o  .o  x
) )
2 2onn 7091 . . . 4  |-  2o  e.  om
3 nnmcl 7063 . . . 4  |-  ( ( 2o  e.  om  /\  x  e.  om )  ->  ( 2o  .o  x
)  e.  om )
42, 3mpan 670 . . 3  |-  ( x  e.  om  ->  ( 2o  .o  x )  e. 
om )
51, 4fmpti 5878 . 2  |-  E : om
--> om
61fin1a2lem3 8583 . . . . . 6  |-  ( a  e.  om  ->  ( E `  a )  =  ( 2o  .o  a ) )
71fin1a2lem3 8583 . . . . . 6  |-  ( b  e.  om  ->  ( E `  b )  =  ( 2o  .o  b ) )
86, 7eqeqan12d 2458 . . . . 5  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( E `  a )  =  ( E `  b )  <-> 
( 2o  .o  a
)  =  ( 2o 
.o  b ) ) )
9 2on 6940 . . . . . . 7  |-  2o  e.  On
109a1i 11 . . . . . 6  |-  ( ( a  e.  om  /\  b  e.  om )  ->  2o  e.  On )
11 nnon 6494 . . . . . . 7  |-  ( a  e.  om  ->  a  e.  On )
1211adantr 465 . . . . . 6  |-  ( ( a  e.  om  /\  b  e.  om )  ->  a  e.  On )
13 nnon 6494 . . . . . . 7  |-  ( b  e.  om  ->  b  e.  On )
1413adantl 466 . . . . . 6  |-  ( ( a  e.  om  /\  b  e.  om )  ->  b  e.  On )
15 0lt1o 6956 . . . . . . . . 9  |-  (/)  e.  1o
16 elelsuc 4803 . . . . . . . . 9  |-  ( (/)  e.  1o  ->  (/)  e.  suc  1o )
1715, 16ax-mp 5 . . . . . . . 8  |-  (/)  e.  suc  1o
18 df-2o 6933 . . . . . . . 8  |-  2o  =  suc  1o
1917, 18eleqtrri 2516 . . . . . . 7  |-  (/)  e.  2o
2019a1i 11 . . . . . 6  |-  ( ( a  e.  om  /\  b  e.  om )  -> 
(/)  e.  2o )
21 omcan 7020 . . . . . 6  |-  ( ( ( 2o  e.  On  /\  a  e.  On  /\  b  e.  On )  /\  (/)  e.  2o )  ->  ( ( 2o 
.o  a )  =  ( 2o  .o  b
)  <->  a  =  b ) )
2210, 12, 14, 20, 21syl31anc 1221 . . . . 5  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( 2o  .o  a )  =  ( 2o  .o  b )  <-> 
a  =  b ) )
238, 22bitrd 253 . . . 4  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( E `  a )  =  ( E `  b )  <-> 
a  =  b ) )
2423biimpd 207 . . 3  |-  ( ( a  e.  om  /\  b  e.  om )  ->  ( ( E `  a )  =  ( E `  b )  ->  a  =  b ) )
2524rgen2a 2794 . 2  |-  A. a  e.  om  A. b  e. 
om  ( ( E `
 a )  =  ( E `  b
)  ->  a  =  b )
26 dff13 5983 . 2  |-  ( E : om -1-1-> om  <->  ( E : om --> om  /\  A. a  e.  om  A. b  e. 
om  ( ( E `
 a )  =  ( E `  b
)  ->  a  =  b ) ) )
275, 25, 26mpbir2an 911 1  |-  E : om
-1-1-> om
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2727   (/)c0 3649    e. cmpt 4362   Oncon0 4731   suc csuc 4733   -->wf 5426   -1-1->wf1 5427   ` cfv 5430  (class class class)co 6103   omcom 6488   1oc1o 6925   2oc2o 6926    .o comu 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-omul 6937
This theorem is referenced by:  fin1a2lem5  8585  fin1a2lem6  8586  fin1a2lem7  8587
  Copyright terms: Public domain W3C validator