MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem12 Structured version   Unicode version

Theorem fin1a2lem12 8787
Description: Lemma for fin1a2 8791. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2lem12  |-  ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  ->  -.  B  e. FinIII )

Proof of Theorem fin1a2lem12
Dummy variables  d 
e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  B  e. FinIII )
2 simpll1 1035 . . . . . . 7  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  A  C_ 
~P B )
32adantr 465 . . . . . 6  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  e  e.  om )  ->  A  C_  ~P B
)
4 ssrab2 3585 . . . . . . . 8  |-  { f  e.  A  |  f  ~<_  e }  C_  A
54unissi 4268 . . . . . . 7  |-  U. {
f  e.  A  | 
f  ~<_  e }  C_  U. A
6 sspwuni 4411 . . . . . . . 8  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
76biimpi 194 . . . . . . 7  |-  ( A 
C_  ~P B  ->  U. A  C_  B )
85, 7syl5ss 3515 . . . . . 6  |-  ( A 
C_  ~P B  ->  U. {
f  e.  A  | 
f  ~<_  e }  C_  B )
93, 8syl 16 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  e  e.  om )  ->  U. { f  e.  A  |  f  ~<_  e }  C_  B )
10 elpw2g 4610 . . . . . 6  |-  ( B  e. FinIII  ->  ( U. {
f  e.  A  | 
f  ~<_  e }  e.  ~P B  <->  U. { f  e.  A  |  f  ~<_  e }  C_  B )
)
1110ad2antlr 726 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  e  e.  om )  ->  ( U. { f  e.  A  |  f  ~<_  e }  e.  ~P B 
<-> 
U. { f  e.  A  |  f  ~<_  e }  C_  B )
)
129, 11mpbird 232 . . . 4  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  e  e.  om )  ->  U. { f  e.  A  |  f  ~<_  e }  e.  ~P B
)
13 eqid 2467 . . . 4  |-  ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } )  =  ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } )
1412, 13fmptd 6043 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) : om --> ~P B
)
15 vex 3116 . . . . . . . . . . 11  |-  d  e. 
_V
1615sucex 6624 . . . . . . . . . 10  |-  suc  d  e.  _V
17 sssucid 4955 . . . . . . . . . 10  |-  d  C_  suc  d
18 ssdomg 7558 . . . . . . . . . 10  |-  ( suc  d  e.  _V  ->  ( d  C_  suc  d  -> 
d  ~<_  suc  d )
)
1916, 17, 18mp2 9 . . . . . . . . 9  |-  d  ~<_  suc  d
20 domtr 7565 . . . . . . . . 9  |-  ( ( f  ~<_  d  /\  d  ~<_  suc  d )  ->  f  ~<_  suc  d )
2119, 20mpan2 671 . . . . . . . 8  |-  ( f  ~<_  d  ->  f  ~<_  suc  d
)
2221a1i 11 . . . . . . 7  |-  ( f  e.  A  ->  (
f  ~<_  d  ->  f  ~<_  suc  d ) )
2322ss2rabi 3582 . . . . . 6  |-  { f  e.  A  |  f  ~<_  d }  C_  { f  e.  A  |  f  ~<_  suc  d }
24 uniss 4266 . . . . . 6  |-  ( { f  e.  A  | 
f  ~<_  d }  C_  { f  e.  A  | 
f  ~<_  suc  d }  ->  U. { f  e.  A  |  f  ~<_  d }  C_  U. { f  e.  A  |  f  ~<_  suc  d } )
2523, 24mp1i 12 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  d  e.  om )  ->  U. { f  e.  A  |  f  ~<_  d }  C_  U. { f  e.  A  |  f  ~<_  suc  d } )
26 id 22 . . . . . 6  |-  ( d  e.  om  ->  d  e.  om )
27 pwexg 4631 . . . . . . . . 9  |-  ( B  e. FinIII  ->  ~P B  e. 
_V )
2827adantl 466 . . . . . . . 8  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  ~P B  e.  _V )
2928, 2ssexd 4594 . . . . . . 7  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  A  e.  _V )
30 rabexg 4597 . . . . . . 7  |-  ( A  e.  _V  ->  { f  e.  A  |  f  ~<_  d }  e.  _V )
31 uniexg 6579 . . . . . . 7  |-  ( { f  e.  A  | 
f  ~<_  d }  e.  _V  ->  U. { f  e.  A  |  f  ~<_  d }  e.  _V )
3229, 30, 313syl 20 . . . . . 6  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  U. {
f  e.  A  | 
f  ~<_  d }  e.  _V )
33 breq2 4451 . . . . . . . . 9  |-  ( e  =  d  ->  (
f  ~<_  e  <->  f  ~<_  d ) )
3433rabbidv 3105 . . . . . . . 8  |-  ( e  =  d  ->  { f  e.  A  |  f  ~<_  e }  =  {
f  e.  A  | 
f  ~<_  d } )
3534unieqd 4255 . . . . . . 7  |-  ( e  =  d  ->  U. {
f  e.  A  | 
f  ~<_  e }  =  U. { f  e.  A  |  f  ~<_  d }
)
3635, 13fvmptg 5946 . . . . . 6  |-  ( ( d  e.  om  /\  U. { f  e.  A  |  f  ~<_  d }  e.  _V )  ->  (
( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) `  d )  =  U. { f  e.  A  |  f  ~<_  d } )
3726, 32, 36syl2anr 478 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  d  e.  om )  ->  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  d
)  =  U. {
f  e.  A  | 
f  ~<_  d } )
38 peano2 6698 . . . . . 6  |-  ( d  e.  om  ->  suc  d  e.  om )
39 rabexg 4597 . . . . . . 7  |-  ( A  e.  _V  ->  { f  e.  A  |  f  ~<_  suc  d }  e.  _V )
40 uniexg 6579 . . . . . . 7  |-  ( { f  e.  A  | 
f  ~<_  suc  d }  e.  _V  ->  U. { f  e.  A  |  f  ~<_  suc  d }  e.  _V )
4129, 39, 403syl 20 . . . . . 6  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  U. {
f  e.  A  | 
f  ~<_  suc  d }  e.  _V )
42 breq2 4451 . . . . . . . . 9  |-  ( e  =  suc  d  -> 
( f  ~<_  e  <->  f  ~<_  suc  d
) )
4342rabbidv 3105 . . . . . . . 8  |-  ( e  =  suc  d  ->  { f  e.  A  |  f  ~<_  e }  =  { f  e.  A  |  f  ~<_  suc  d } )
4443unieqd 4255 . . . . . . 7  |-  ( e  =  suc  d  ->  U. { f  e.  A  |  f  ~<_  e }  =  U. { f  e.  A  |  f  ~<_  suc  d } )
4544, 13fvmptg 5946 . . . . . 6  |-  ( ( suc  d  e.  om  /\ 
U. { f  e.  A  |  f  ~<_  suc  d }  e.  _V )  ->  ( ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } ) `
 suc  d )  =  U. { f  e.  A  |  f  ~<_  suc  d } )
4638, 41, 45syl2anr 478 . . . . 5  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  d  e.  om )  ->  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  suc  d )  =  U. { f  e.  A  |  f  ~<_  suc  d } )
4725, 37, 463sstr4d 3547 . . . 4  |-  ( ( ( ( ( A 
C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  /\  d  e.  om )  ->  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  d
)  C_  ( (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) `  suc  d ) )
4847ralrimiva 2878 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  A. d  e.  om  ( ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } ) `
 d )  C_  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  suc  d ) )
49 fin34i 8757 . . 3  |-  ( ( B  e. FinIII  /\  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e } ) : om --> ~P B  /\  A. d  e.  om  ( ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } ) `
 d )  C_  ( ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } ) `  suc  d ) )  ->  U. ran  ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } )  e.  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) )
501, 14, 48, 49syl3anc 1228 . 2  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  U. ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  e.  ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) )
51 fin1a2lem11 8786 . . . . . 6  |-  ( ( [
C.]  Or  A  /\  A  C_  Fin )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } ) )
5251adantrr 716 . . . . 5  |-  ( ( [
C.]  Or  A  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } ) )
53523ad2antl2 1159 . . . 4  |-  ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } ) )
5453adantr 465 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } ) )
55 simpll3 1037 . . . . . 6  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  U. A  e.  A )
56 simplrr 760 . . . . . . 7  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  A  =/=  (/) )
57 sspwuni 4411 . . . . . . . . . . 11  |-  ( A 
C_  ~P (/)  <->  U. A  C_  (/) )
58 ss0b 3815 . . . . . . . . . . 11  |-  ( U. A  C_  (/)  <->  U. A  =  (/) )
5957, 58bitri 249 . . . . . . . . . 10  |-  ( A 
C_  ~P (/)  <->  U. A  =  (/) )
60 pw0 4174 . . . . . . . . . . . . 13  |-  ~P (/)  =  { (/)
}
6160sseq2i 3529 . . . . . . . . . . . 12  |-  ( A 
C_  ~P (/)  <->  A  C_  { (/) } )
62 sssn 4185 . . . . . . . . . . . 12  |-  ( A 
C_  { (/) }  <->  ( A  =  (/)  \/  A  =  { (/) } ) )
6361, 62bitri 249 . . . . . . . . . . 11  |-  ( A 
C_  ~P (/)  <->  ( A  =  (/)  \/  A  =  { (/)
} ) )
64 df-ne 2664 . . . . . . . . . . . 12  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
65 0ex 4577 . . . . . . . . . . . . . . . . 17  |-  (/)  e.  _V
6665unisn 4260 . . . . . . . . . . . . . . . 16  |-  U. { (/)
}  =  (/)
6765snid 4055 . . . . . . . . . . . . . . . 16  |-  (/)  e.  { (/)
}
6866, 67eqeltri 2551 . . . . . . . . . . . . . . 15  |-  U. { (/)
}  e.  { (/) }
69 unieq 4253 . . . . . . . . . . . . . . . 16  |-  ( A  =  { (/) }  ->  U. A  =  U. { (/)
} )
70 id 22 . . . . . . . . . . . . . . . 16  |-  ( A  =  { (/) }  ->  A  =  { (/) } )
7169, 70eleq12d 2549 . . . . . . . . . . . . . . 15  |-  ( A  =  { (/) }  ->  ( U. A  e.  A  <->  U. { (/) }  e.  { (/)
} ) )
7268, 71mpbiri 233 . . . . . . . . . . . . . 14  |-  ( A  =  { (/) }  ->  U. A  e.  A )
7372orim2i 518 . . . . . . . . . . . . 13  |-  ( ( A  =  (/)  \/  A  =  { (/) } )  -> 
( A  =  (/)  \/ 
U. A  e.  A
) )
7473ord 377 . . . . . . . . . . . 12  |-  ( ( A  =  (/)  \/  A  =  { (/) } )  -> 
( -.  A  =  (/)  ->  U. A  e.  A
) )
7564, 74syl5bi 217 . . . . . . . . . . 11  |-  ( ( A  =  (/)  \/  A  =  { (/) } )  -> 
( A  =/=  (/)  ->  U. A  e.  A ) )
7663, 75sylbi 195 . . . . . . . . . 10  |-  ( A 
C_  ~P (/)  ->  ( A  =/=  (/)  ->  U. A  e.  A ) )
7759, 76sylbir 213 . . . . . . . . 9  |-  ( U. A  =  (/)  ->  ( A  =/=  (/)  ->  U. A  e.  A ) )
7877com12 31 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( U. A  =  (/)  ->  U. A  e.  A ) )
7978con3d 133 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( -.  U. A  e.  A  ->  -.  U. A  =  (/) ) )
8056, 55, 79sylc 60 . . . . . 6  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  U. A  =  (/) )
81 ioran 490 . . . . . 6  |-  ( -.  ( U. A  e.  A  \/  U. A  =  (/) )  <->  ( -.  U. A  e.  A  /\  -.  U. A  =  (/) ) )
8255, 80, 81sylanbrc 664 . . . . 5  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  ( U. A  e.  A  \/  U. A  =  (/) ) )
83 uniun 4264 . . . . . . . 8  |-  U. ( A  u.  { (/) } )  =  ( U. A  u.  U. { (/) } )
8466uneq2i 3655 . . . . . . . 8  |-  ( U. A  u.  U. { (/) } )  =  ( U. A  u.  (/) )
85 un0 3810 . . . . . . . 8  |-  ( U. A  u.  (/) )  = 
U. A
8683, 84, 853eqtri 2500 . . . . . . 7  |-  U. ( A  u.  { (/) } )  =  U. A
8786eleq1i 2544 . . . . . 6  |-  ( U. ( A  u.  { (/) } )  e.  ( A  u.  { (/) } )  <->  U. A  e.  ( A  u.  { (/) } ) )
88 elun 3645 . . . . . 6  |-  ( U. A  e.  ( A  u.  { (/) } )  <->  ( U. A  e.  A  \/  U. A  e.  { (/) } ) )
8965elsnc2 4058 . . . . . . 7  |-  ( U. A  e.  { (/) }  <->  U. A  =  (/) )
9089orbi2i 519 . . . . . 6  |-  ( ( U. A  e.  A  \/  U. A  e.  { (/)
} )  <->  ( U. A  e.  A  \/  U. A  =  (/) ) )
9187, 88, 903bitri 271 . . . . 5  |-  ( U. ( A  u.  { (/) } )  e.  ( A  u.  { (/) } )  <-> 
( U. A  e.  A  \/  U. A  =  (/) ) )
9282, 91sylnibr 305 . . . 4  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  U. ( A  u.  { (/)
} )  e.  ( A  u.  { (/) } ) )
93 unieq 4253 . . . . . 6  |-  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  U. ran  ( e  e.  om  |->  U. {
f  e.  A  | 
f  ~<_  e } )  =  U. ( A  u.  { (/) } ) )
94 id 22 . . . . . 6  |-  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e } )  =  ( A  u.  { (/) } ) )
9593, 94eleq12d 2549 . . . . 5  |-  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  ( U. ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  e.  ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  <->  U. ( A  u.  {
(/) } )  e.  ( A  u.  { (/) } ) ) )
9695notbid 294 . . . 4  |-  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  ( -.  U. ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  e.  ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  <->  -.  U. ( A  u.  { (/) } )  e.  ( A  u.  {
(/) } ) ) )
9792, 96syl5ibrcom 222 . . 3  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  ( ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  =  ( A  u.  { (/) } )  ->  -.  U. ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
)  e.  ran  (
e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) ) )
9854, 97mpd 15 . 2  |-  ( ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  /\  B  e. FinIII )  ->  -.  U.
ran  ( e  e. 
om  |->  U. { f  e.  A  |  f  ~<_  e } )  e.  ran  ( e  e.  om  |->  U. { f  e.  A  |  f  ~<_  e }
) )
9950, 98pm2.65da 576 1  |-  ( ( ( A  C_  ~P B  /\ [ C.]  Or  A  /\  -.  U. A  e.  A )  /\  ( A  C_  Fin  /\  A  =/=  (/) ) )  ->  -.  B  e. FinIII )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   {crab 2818   _Vcvv 3113    u. cun 3474    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   U.cuni 4245   class class class wbr 4447    |-> cmpt 4505    Or wor 4799   suc csuc 4880   ran crn 5000   -->wf 5582   ` cfv 5586   [ C.] crpss 6561   omcom 6678    ~<_ cdom 7511   Fincfn 7513  FinIIIcfin3 8657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-rpss 6562  df-om 6679  df-recs 7039  df-rdg 7073  df-1o 7127  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-wdom 7981  df-card 8316  df-fin4 8663  df-fin3 8664
This theorem is referenced by:  fin1a2s  8790
  Copyright terms: Public domain W3C validator