MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem11 Structured version   Visualization version   Unicode version

Theorem fin1a2lem11 8858
Description: Lemma for fin1a2 8863. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem11  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ran  ( b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  ( A  u.  { (/) } ) )
Distinct variable group:    b, c, A

Proof of Theorem fin1a2lem11
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 eqid 2471 . . 3  |-  ( b  e.  om  |->  U. {
c  e.  A  | 
c  ~<_  b } )  =  ( b  e. 
om  |->  U. { c  e.  A  |  c  ~<_  b } )
21rnmpt 5086 . 2  |-  ran  (
b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  { d  |  E. b  e. 
om  d  =  U. { c  e.  A  |  c  ~<_  b } }
3 unieq 4198 . . . . . . . . . . . 12  |-  ( { c  e.  A  | 
c  ~<_  b }  =  (/) 
->  U. { c  e.  A  |  c  ~<_  b }  =  U. (/) )
4 uni0 4217 . . . . . . . . . . . 12  |-  U. (/)  =  (/)
53, 4syl6eq 2521 . . . . . . . . . . 11  |-  ( { c  e.  A  | 
c  ~<_  b }  =  (/) 
->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
65adantl 473 . . . . . . . . . 10  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
7 0ex 4528 . . . . . . . . . . 11  |-  (/)  e.  _V
87elsnc2 3991 . . . . . . . . . 10  |-  ( U. { c  e.  A  |  c  ~<_  b }  e.  { (/) }  <->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
96, 8sylibr 217 . . . . . . . . 9  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } )
109olcd 400 . . . . . . . 8  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  -> 
( U. { c  e.  A  |  c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
11 ssrab2 3500 . . . . . . . . . 10  |-  { c  e.  A  |  c  ~<_  b }  C_  A
12 simpr 468 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  { c  e.  A  |  c  ~<_  b }  =/=  (/) )
13 simplll 776 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> [ C.] 
Or  A )
14 simpllr 777 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  A  C_  Fin )
15 simplr 770 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> 
b  e.  om )
16 fin1a2lem9 8856 . . . . . . . . . . . 12  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin  /\  b  e.  om )  ->  { c  e.  A  |  c  ~<_  b }  e.  Fin )
1713, 14, 15, 16syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  { c  e.  A  |  c  ~<_  b }  e.  Fin )
18 soss 4778 . . . . . . . . . . . 12  |-  ( { c  e.  A  | 
c  ~<_  b }  C_  A  ->  ( [ C.]  Or  A  -> [
C.]  Or  { c  e.  A  |  c  ~<_  b } ) )
1911, 13, 18mpsyl 64 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> [ C.] 
Or  { c  e.  A  |  c  ~<_  b } )
20 fin1a2lem10 8857 . . . . . . . . . . 11  |-  ( ( { c  e.  A  |  c  ~<_  b }  =/=  (/)  /\  { c  e.  A  |  c  ~<_  b }  e.  Fin  /\ [ C.]  Or  { c  e.  A  |  c  ~<_  b } )  ->  U. {
c  e.  A  | 
c  ~<_  b }  e.  { c  e.  A  | 
c  ~<_  b } )
2112, 17, 19, 20syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  { c  e.  A  |  c  ~<_  b }
)
2211, 21sseldi 3416 . . . . . . . . 9  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  A )
2322orcd 399 . . . . . . . 8  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> 
( U. { c  e.  A  |  c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
2410, 23pm2.61dane 2730 . . . . . . 7  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  ->  ( U. {
c  e.  A  | 
c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/)
} ) )
25 eleq1 2537 . . . . . . . 8  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
d  e.  A  <->  U. { c  e.  A  |  c  ~<_  b }  e.  A
) )
26 eleq1 2537 . . . . . . . 8  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
d  e.  { (/) }  <->  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
2725, 26orbi12d 724 . . . . . . 7  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
( d  e.  A  \/  d  e.  { (/) } )  <->  ( U. {
c  e.  A  | 
c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/)
} ) ) )
2824, 27syl5ibrcom 230 . . . . . 6  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  ->  ( d  = 
U. { c  e.  A  |  c  ~<_  b }  ->  ( d  e.  A  \/  d  e.  { (/) } ) ) )
2928rexlimdva 2871 . . . . 5  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
d  e.  A  \/  d  e.  { (/) } ) ) )
30 simpr 468 . . . . . . . . . 10  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  A  C_ 
Fin )
3130sselda 3418 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  Fin )
32 ficardom 8413 . . . . . . . . 9  |-  ( d  e.  Fin  ->  ( card `  d )  e. 
om )
3331, 32syl 17 . . . . . . . 8  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( card `  d )  e.  om )
34 simpr 468 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  A )
35 ficardid 8414 . . . . . . . . . . . . 13  |-  ( d  e.  Fin  ->  ( card `  d )  ~~  d )
3631, 35syl 17 . . . . . . . . . . . 12  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( card `  d )  ~~  d
)
37 ensym 7636 . . . . . . . . . . . 12  |-  ( (
card `  d )  ~~  d  ->  d  ~~  ( card `  d )
)
38 endom 7614 . . . . . . . . . . . 12  |-  ( d 
~~  ( card `  d
)  ->  d  ~<_  ( card `  d ) )
3936, 37, 383syl 18 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  ~<_  ( card `  d ) )
40 breq1 4398 . . . . . . . . . . . 12  |-  ( c  =  d  ->  (
c  ~<_  ( card `  d
)  <->  d  ~<_  ( card `  d ) ) )
4140elrab 3184 . . . . . . . . . . 11  |-  ( d  e.  { c  e.  A  |  c  ~<_  (
card `  d ) } 
<->  ( d  e.  A  /\  d  ~<_  ( card `  d ) ) )
4234, 39, 41sylanbrc 677 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  { c  e.  A  | 
c  ~<_  ( card `  d
) } )
43 elssuni 4219 . . . . . . . . . 10  |-  ( d  e.  { c  e.  A  |  c  ~<_  (
card `  d ) }  ->  d  C_  U. {
c  e.  A  | 
c  ~<_  ( card `  d
) } )
4442, 43syl 17 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  C_  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
45 breq1 4398 . . . . . . . . . . . . 13  |-  ( c  =  b  ->  (
c  ~<_  ( card `  d
)  <->  b  ~<_  ( card `  d ) ) )
4645elrab 3184 . . . . . . . . . . . 12  |-  ( b  e.  { c  e.  A  |  c  ~<_  (
card `  d ) } 
<->  ( b  e.  A  /\  b  ~<_  ( card `  d ) ) )
47 simprr 774 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  ~<_  ( card `  d )
)
4836adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  ( card `  d )  ~~  d )
49 domentr 7646 . . . . . . . . . . . . . . 15  |-  ( ( b  ~<_  ( card `  d
)  /\  ( card `  d )  ~~  d
)  ->  b  ~<_  d )
5047, 48, 49syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  ~<_  d )
51 simpllr 777 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  A  C_ 
Fin )
52 simprl 772 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  e.  A )
5351, 52sseldd 3419 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  e.  Fin )
5431adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  d  e.  Fin )
55 simplll 776 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  -> [ C.]  Or  A
)
56 simplr 770 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  d  e.  A )
57 sorpssi 6596 . . . . . . . . . . . . . . . 16  |-  ( ( [ C.]  Or  A  /\  (
b  e.  A  /\  d  e.  A )
)  ->  ( b  C_  d  \/  d  C_  b ) )
5855, 52, 56, 57syl12anc 1290 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  (
b  C_  d  \/  d  C_  b ) )
59 fincssdom 8771 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  Fin  /\  d  e.  Fin  /\  (
b  C_  d  \/  d  C_  b ) )  ->  ( b  ~<_  d  <-> 
b  C_  d )
)
6053, 54, 58, 59syl3anc 1292 . . . . . . . . . . . . . 14  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  (
b  ~<_  d  <->  b  C_  d ) )
6150, 60mpbid 215 . . . . . . . . . . . . 13  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  C_  d )
6261ex 441 . . . . . . . . . . . 12  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( (
b  e.  A  /\  b  ~<_  ( card `  d
) )  ->  b  C_  d ) )
6346, 62syl5bi 225 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( b  e.  { c  e.  A  |  c  ~<_  ( card `  d ) }  ->  b 
C_  d ) )
6463ralrimiv 2808 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  A. b  e.  { c  e.  A  |  c  ~<_  ( card `  d ) } b 
C_  d )
65 unissb 4221 . . . . . . . . . 10  |-  ( U. { c  e.  A  |  c  ~<_  ( card `  d ) }  C_  d 
<-> 
A. b  e.  {
c  e.  A  | 
c  ~<_  ( card `  d
) } b  C_  d )
6664, 65sylibr 217 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  U. { c  e.  A  |  c  ~<_  ( card `  d
) }  C_  d
)
6744, 66eqssd 3435 . . . . . . . 8  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
68 breq2 4399 . . . . . . . . . . . 12  |-  ( b  =  ( card `  d
)  ->  ( c  ~<_  b 
<->  c  ~<_  ( card `  d
) ) )
6968rabbidv 3022 . . . . . . . . . . 11  |-  ( b  =  ( card `  d
)  ->  { c  e.  A  |  c  ~<_  b }  =  {
c  e.  A  | 
c  ~<_  ( card `  d
) } )
7069unieqd 4200 . . . . . . . . . 10  |-  ( b  =  ( card `  d
)  ->  U. { c  e.  A  |  c  ~<_  b }  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
7170eqeq2d 2481 . . . . . . . . 9  |-  ( b  =  ( card `  d
)  ->  ( d  =  U. { c  e.  A  |  c  ~<_  b }  <->  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } ) )
7271rspcev 3136 . . . . . . . 8  |-  ( ( ( card `  d
)  e.  om  /\  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d
) } )  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } )
7333, 67, 72syl2anc 673 . . . . . . 7  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }
)
7473ex 441 . . . . . 6  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
d  e.  A  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } ) )
75 elsn 3973 . . . . . . 7  |-  ( d  e.  { (/) }  <->  d  =  (/) )
76 peano1 6731 . . . . . . . . 9  |-  (/)  e.  om
77 dom0 7718 . . . . . . . . . . . . . . . 16  |-  ( b  ~<_  (/) 
<->  b  =  (/) )
7877biimpi 199 . . . . . . . . . . . . . . 15  |-  ( b  ~<_  (/)  ->  b  =  (/) )
7978adantl 473 . . . . . . . . . . . . . 14  |-  ( ( b  e.  A  /\  b  ~<_  (/) )  ->  b  =  (/) )
8079a1i 11 . . . . . . . . . . . . 13  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
( b  e.  A  /\  b  ~<_  (/) )  -> 
b  =  (/) ) )
81 breq1 4398 . . . . . . . . . . . . . 14  |-  ( c  =  b  ->  (
c  ~<_  (/)  <->  b  ~<_  (/) ) )
8281elrab 3184 . . . . . . . . . . . . 13  |-  ( b  e.  { c  e.  A  |  c  ~<_  (/) }  <-> 
( b  e.  A  /\  b  ~<_  (/) ) )
83 elsn 3973 . . . . . . . . . . . . 13  |-  ( b  e.  { (/) }  <->  b  =  (/) )
8480, 82, 833imtr4g 278 . . . . . . . . . . . 12  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
b  e.  { c  e.  A  |  c  ~<_  (/) }  ->  b  e.  {
(/) } ) )
8584ssrdv 3424 . . . . . . . . . . 11  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  { c  e.  A  |  c  ~<_  (/) }  C_  { (/) } )
86 uni0b 4215 . . . . . . . . . . 11  |-  ( U. { c  e.  A  |  c  ~<_  (/) }  =  (/)  <->  { c  e.  A  | 
c  ~<_  (/) }  C_  { (/) } )
8785, 86sylibr 217 . . . . . . . . . 10  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  U. {
c  e.  A  | 
c  ~<_  (/) }  =  (/) )
8887eqcomd 2477 . . . . . . . . 9  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (/)  =  U. { c  e.  A  |  c  ~<_  (/) } )
89 breq2 4399 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( c  ~<_  b  <->  c  ~<_  (/) ) )
9089rabbidv 3022 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  { c  e.  A  |  c  ~<_  b }  =  {
c  e.  A  | 
c  ~<_  (/) } )
9190unieqd 4200 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  U. {
c  e.  A  | 
c  ~<_  b }  =  U. { c  e.  A  |  c  ~<_  (/) } )
9291eqeq2d 2481 . . . . . . . . . 10  |-  ( b  =  (/)  ->  ( (/)  =  U. { c  e.  A  |  c  ~<_  b }  <->  (/)  =  U. {
c  e.  A  | 
c  ~<_  (/) } ) )
9392rspcev 3136 . . . . . . . . 9  |-  ( (
(/)  e.  om  /\  (/)  =  U. { c  e.  A  |  c  ~<_  (/) } )  ->  E. b  e.  om  (/)  =  U. { c  e.  A  |  c  ~<_  b } )
9476, 88, 93sylancr 676 . . . . . . . 8  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  E. b  e.  om  (/)  =  U. {
c  e.  A  | 
c  ~<_  b } )
95 eqeq1 2475 . . . . . . . . 9  |-  ( d  =  (/)  ->  ( d  =  U. { c  e.  A  |  c  ~<_  b }  <->  (/)  =  U. { c  e.  A  |  c  ~<_  b }
) )
9695rexbidv 2892 . . . . . . . 8  |-  ( d  =  (/)  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  E. b  e.  om  (/)  =  U. { c  e.  A  |  c  ~<_  b } ) )
9794, 96syl5ibrcom 230 . . . . . . 7  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
d  =  (/)  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }
) )
9875, 97syl5bi 225 . . . . . 6  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
d  e.  { (/) }  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } ) )
9974, 98jaod 387 . . . . 5  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
( d  e.  A  \/  d  e.  { (/) } )  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }
) )
10029, 99impbid 195 . . . 4  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  ( d  e.  A  \/  d  e.  { (/) } ) ) )
101 elun 3565 . . . 4  |-  ( d  e.  ( A  u.  {
(/) } )  <->  ( d  e.  A  \/  d  e.  { (/) } ) )
102100, 101syl6bbr 271 . . 3  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  d  e.  ( A  u.  { (/) } ) ) )
103102abbi1dv 2591 . 2  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  { d  |  E. b  e. 
om  d  =  U. { c  e.  A  |  c  ~<_  b } }  =  ( A  u.  { (/) } ) )
1042, 103syl5eq 2517 1  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ran  ( b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  ( A  u.  { (/) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   A.wral 2756   E.wrex 2757   {crab 2760    u. cun 3388    C_ wss 3390   (/)c0 3722   {csn 3959   U.cuni 4190   class class class wbr 4395    |-> cmpt 4454    Or wor 4759   ran crn 4840   ` cfv 5589   [ C.] crpss 6589   omcom 6711    ~~ cen 7584    ~<_ cdom 7585   Fincfn 7587   cardccrd 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-rpss 6590  df-om 6712  df-1o 7200  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391
This theorem is referenced by:  fin1a2lem12  8859
  Copyright terms: Public domain W3C validator