MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem11 Structured version   Unicode version

Theorem fin1a2lem11 8781
Description: Lemma for fin1a2 8786. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem11  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ran  ( b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  ( A  u.  { (/) } ) )
Distinct variable group:    b, c, A

Proof of Theorem fin1a2lem11
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . . 3  |-  ( b  e.  om  |->  U. {
c  e.  A  | 
c  ~<_  b } )  =  ( b  e. 
om  |->  U. { c  e.  A  |  c  ~<_  b } )
21rnmpt 5237 . 2  |-  ran  (
b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  { d  |  E. b  e. 
om  d  =  U. { c  e.  A  |  c  ~<_  b } }
3 unieq 4243 . . . . . . . . . . . 12  |-  ( { c  e.  A  | 
c  ~<_  b }  =  (/) 
->  U. { c  e.  A  |  c  ~<_  b }  =  U. (/) )
4 uni0 4262 . . . . . . . . . . . 12  |-  U. (/)  =  (/)
53, 4syl6eq 2511 . . . . . . . . . . 11  |-  ( { c  e.  A  | 
c  ~<_  b }  =  (/) 
->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
65adantl 464 . . . . . . . . . 10  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
7 0ex 4569 . . . . . . . . . . 11  |-  (/)  e.  _V
87elsnc2 4047 . . . . . . . . . 10  |-  ( U. { c  e.  A  |  c  ~<_  b }  e.  { (/) }  <->  U. { c  e.  A  |  c  ~<_  b }  =  (/) )
96, 8sylibr 212 . . . . . . . . 9  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } )
109olcd 391 . . . . . . . 8  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =  (/) )  -> 
( U. { c  e.  A  |  c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
11 ssrab2 3571 . . . . . . . . . 10  |-  { c  e.  A  |  c  ~<_  b }  C_  A
12 simpr 459 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  { c  e.  A  |  c  ~<_  b }  =/=  (/) )
13 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> [ C.] 
Or  A )
14 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  A  C_  Fin )
15 simplr 753 . . . . . . . . . . . 12  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> 
b  e.  om )
16 fin1a2lem9 8779 . . . . . . . . . . . 12  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin  /\  b  e.  om )  ->  { c  e.  A  |  c  ~<_  b }  e.  Fin )
1713, 14, 15, 16syl3anc 1226 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  { c  e.  A  |  c  ~<_  b }  e.  Fin )
18 soss 4807 . . . . . . . . . . . 12  |-  ( { c  e.  A  | 
c  ~<_  b }  C_  A  ->  ( [ C.]  Or  A  -> [
C.]  Or  { c  e.  A  |  c  ~<_  b } ) )
1911, 13, 18mpsyl 63 . . . . . . . . . . 11  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> [ C.] 
Or  { c  e.  A  |  c  ~<_  b } )
20 fin1a2lem10 8780 . . . . . . . . . . 11  |-  ( ( { c  e.  A  |  c  ~<_  b }  =/=  (/)  /\  { c  e.  A  |  c  ~<_  b }  e.  Fin  /\ [ C.]  Or  { c  e.  A  |  c  ~<_  b } )  ->  U. {
c  e.  A  | 
c  ~<_  b }  e.  { c  e.  A  | 
c  ~<_  b } )
2112, 17, 19, 20syl3anc 1226 . . . . . . . . . 10  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  { c  e.  A  |  c  ~<_  b }
)
2211, 21sseldi 3487 . . . . . . . . 9  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  ->  U. { c  e.  A  |  c  ~<_  b }  e.  A )
2322orcd 390 . . . . . . . 8  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  /\  { c  e.  A  |  c  ~<_  b }  =/=  (/) )  -> 
( U. { c  e.  A  |  c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
2410, 23pm2.61dane 2772 . . . . . . 7  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  ->  ( U. {
c  e.  A  | 
c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/)
} ) )
25 eleq1 2526 . . . . . . . 8  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
d  e.  A  <->  U. { c  e.  A  |  c  ~<_  b }  e.  A
) )
26 eleq1 2526 . . . . . . . 8  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
d  e.  { (/) }  <->  U. { c  e.  A  |  c  ~<_  b }  e.  { (/) } ) )
2725, 26orbi12d 707 . . . . . . 7  |-  ( d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
( d  e.  A  \/  d  e.  { (/) } )  <->  ( U. {
c  e.  A  | 
c  ~<_  b }  e.  A  \/  U. { c  e.  A  |  c  ~<_  b }  e.  { (/)
} ) ) )
2824, 27syl5ibrcom 222 . . . . . 6  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  b  e.  om )  ->  ( d  = 
U. { c  e.  A  |  c  ~<_  b }  ->  ( d  e.  A  \/  d  e.  { (/) } ) ) )
2928rexlimdva 2946 . . . . 5  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  ->  (
d  e.  A  \/  d  e.  { (/) } ) ) )
30 simpr 459 . . . . . . . . . 10  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  A  C_ 
Fin )
3130sselda 3489 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  Fin )
32 ficardom 8333 . . . . . . . . 9  |-  ( d  e.  Fin  ->  ( card `  d )  e. 
om )
3331, 32syl 16 . . . . . . . 8  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( card `  d )  e.  om )
34 simpr 459 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  A )
35 ficardid 8334 . . . . . . . . . . . . 13  |-  ( d  e.  Fin  ->  ( card `  d )  ~~  d )
3631, 35syl 16 . . . . . . . . . . . 12  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( card `  d )  ~~  d
)
37 ensym 7557 . . . . . . . . . . . 12  |-  ( (
card `  d )  ~~  d  ->  d  ~~  ( card `  d )
)
38 endom 7535 . . . . . . . . . . . 12  |-  ( d 
~~  ( card `  d
)  ->  d  ~<_  ( card `  d ) )
3936, 37, 383syl 20 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  ~<_  ( card `  d ) )
40 breq1 4442 . . . . . . . . . . . 12  |-  ( c  =  d  ->  (
c  ~<_  ( card `  d
)  <->  d  ~<_  ( card `  d ) ) )
4140elrab 3254 . . . . . . . . . . 11  |-  ( d  e.  { c  e.  A  |  c  ~<_  (
card `  d ) } 
<->  ( d  e.  A  /\  d  ~<_  ( card `  d ) ) )
4234, 39, 41sylanbrc 662 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  e.  { c  e.  A  | 
c  ~<_  ( card `  d
) } )
43 elssuni 4264 . . . . . . . . . 10  |-  ( d  e.  { c  e.  A  |  c  ~<_  (
card `  d ) }  ->  d  C_  U. {
c  e.  A  | 
c  ~<_  ( card `  d
) } )
4442, 43syl 16 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  C_  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
45 breq1 4442 . . . . . . . . . . . . 13  |-  ( c  =  b  ->  (
c  ~<_  ( card `  d
)  <->  b  ~<_  ( card `  d ) ) )
4645elrab 3254 . . . . . . . . . . . 12  |-  ( b  e.  { c  e.  A  |  c  ~<_  (
card `  d ) } 
<->  ( b  e.  A  /\  b  ~<_  ( card `  d ) ) )
47 simprr 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  ~<_  ( card `  d )
)
4836adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  ( card `  d )  ~~  d )
49 domentr 7567 . . . . . . . . . . . . . . 15  |-  ( ( b  ~<_  ( card `  d
)  /\  ( card `  d )  ~~  d
)  ->  b  ~<_  d )
5047, 48, 49syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  ~<_  d )
51 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  A  C_ 
Fin )
52 simprl 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  e.  A )
5351, 52sseldd 3490 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  e.  Fin )
5431adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  d  e.  Fin )
55 simplll 757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  -> [ C.]  Or  A
)
56 simplr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  d  e.  A )
57 sorpssi 6559 . . . . . . . . . . . . . . . 16  |-  ( ( [ C.]  Or  A  /\  (
b  e.  A  /\  d  e.  A )
)  ->  ( b  C_  d  \/  d  C_  b ) )
5855, 52, 56, 57syl12anc 1224 . . . . . . . . . . . . . . 15  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  (
b  C_  d  \/  d  C_  b ) )
59 fincssdom 8694 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  Fin  /\  d  e.  Fin  /\  (
b  C_  d  \/  d  C_  b ) )  ->  ( b  ~<_  d  <-> 
b  C_  d )
)
6053, 54, 58, 59syl3anc 1226 . . . . . . . . . . . . . 14  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  (
b  ~<_  d  <->  b  C_  d ) )
6150, 60mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  /\  ( b  e.  A  /\  b  ~<_  ( card `  d )
) )  ->  b  C_  d )
6261ex 432 . . . . . . . . . . . 12  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( (
b  e.  A  /\  b  ~<_  ( card `  d
) )  ->  b  C_  d ) )
6346, 62syl5bi 217 . . . . . . . . . . 11  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  ( b  e.  { c  e.  A  |  c  ~<_  ( card `  d ) }  ->  b 
C_  d ) )
6463ralrimiv 2866 . . . . . . . . . 10  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  A. b  e.  { c  e.  A  |  c  ~<_  ( card `  d ) } b 
C_  d )
65 unissb 4266 . . . . . . . . . 10  |-  ( U. { c  e.  A  |  c  ~<_  ( card `  d ) }  C_  d 
<-> 
A. b  e.  {
c  e.  A  | 
c  ~<_  ( card `  d
) } b  C_  d )
6664, 65sylibr 212 . . . . . . . . 9  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  U. { c  e.  A  |  c  ~<_  ( card `  d
) }  C_  d
)
6744, 66eqssd 3506 . . . . . . . 8  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
68 breq2 4443 . . . . . . . . . . . 12  |-  ( b  =  ( card `  d
)  ->  ( c  ~<_  b 
<->  c  ~<_  ( card `  d
) ) )
6968rabbidv 3098 . . . . . . . . . . 11  |-  ( b  =  ( card `  d
)  ->  { c  e.  A  |  c  ~<_  b }  =  {
c  e.  A  | 
c  ~<_  ( card `  d
) } )
7069unieqd 4245 . . . . . . . . . 10  |-  ( b  =  ( card `  d
)  ->  U. { c  e.  A  |  c  ~<_  b }  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } )
7170eqeq2d 2468 . . . . . . . . 9  |-  ( b  =  ( card `  d
)  ->  ( d  =  U. { c  e.  A  |  c  ~<_  b }  <->  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d ) } ) )
7271rspcev 3207 . . . . . . . 8  |-  ( ( ( card `  d
)  e.  om  /\  d  =  U. { c  e.  A  |  c  ~<_  ( card `  d
) } )  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } )
7333, 67, 72syl2anc 659 . . . . . . 7  |-  ( ( ( [ C.]  Or  A  /\  A  C_  Fin )  /\  d  e.  A
)  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }
)
7473ex 432 . . . . . 6  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
d  e.  A  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } ) )
75 elsn 4030 . . . . . . 7  |-  ( d  e.  { (/) }  <->  d  =  (/) )
76 peano1 6692 . . . . . . . . 9  |-  (/)  e.  om
77 dom0 7638 . . . . . . . . . . . . . . . 16  |-  ( b  ~<_  (/) 
<->  b  =  (/) )
7877biimpi 194 . . . . . . . . . . . . . . 15  |-  ( b  ~<_  (/)  ->  b  =  (/) )
7978adantl 464 . . . . . . . . . . . . . 14  |-  ( ( b  e.  A  /\  b  ~<_  (/) )  ->  b  =  (/) )
8079a1i 11 . . . . . . . . . . . . 13  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
( b  e.  A  /\  b  ~<_  (/) )  -> 
b  =  (/) ) )
81 breq1 4442 . . . . . . . . . . . . . 14  |-  ( c  =  b  ->  (
c  ~<_  (/)  <->  b  ~<_  (/) ) )
8281elrab 3254 . . . . . . . . . . . . 13  |-  ( b  e.  { c  e.  A  |  c  ~<_  (/) }  <-> 
( b  e.  A  /\  b  ~<_  (/) ) )
83 elsn 4030 . . . . . . . . . . . . 13  |-  ( b  e.  { (/) }  <->  b  =  (/) )
8480, 82, 833imtr4g 270 . . . . . . . . . . . 12  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
b  e.  { c  e.  A  |  c  ~<_  (/) }  ->  b  e.  {
(/) } ) )
8584ssrdv 3495 . . . . . . . . . . 11  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  { c  e.  A  |  c  ~<_  (/) }  C_  { (/) } )
86 uni0b 4260 . . . . . . . . . . 11  |-  ( U. { c  e.  A  |  c  ~<_  (/) }  =  (/)  <->  { c  e.  A  | 
c  ~<_  (/) }  C_  { (/) } )
8785, 86sylibr 212 . . . . . . . . . 10  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  U. {
c  e.  A  | 
c  ~<_  (/) }  =  (/) )
8887eqcomd 2462 . . . . . . . . 9  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (/)  =  U. { c  e.  A  |  c  ~<_  (/) } )
89 breq2 4443 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( c  ~<_  b  <->  c  ~<_  (/) ) )
9089rabbidv 3098 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  { c  e.  A  |  c  ~<_  b }  =  {
c  e.  A  | 
c  ~<_  (/) } )
9190unieqd 4245 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  U. {
c  e.  A  | 
c  ~<_  b }  =  U. { c  e.  A  |  c  ~<_  (/) } )
9291eqeq2d 2468 . . . . . . . . . 10  |-  ( b  =  (/)  ->  ( (/)  =  U. { c  e.  A  |  c  ~<_  b }  <->  (/)  =  U. {
c  e.  A  | 
c  ~<_  (/) } ) )
9392rspcev 3207 . . . . . . . . 9  |-  ( (
(/)  e.  om  /\  (/)  =  U. { c  e.  A  |  c  ~<_  (/) } )  ->  E. b  e.  om  (/)  =  U. { c  e.  A  |  c  ~<_  b } )
9476, 88, 93sylancr 661 . . . . . . . 8  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  E. b  e.  om  (/)  =  U. {
c  e.  A  | 
c  ~<_  b } )
95 eqeq1 2458 . . . . . . . . 9  |-  ( d  =  (/)  ->  ( d  =  U. { c  e.  A  |  c  ~<_  b }  <->  (/)  =  U. { c  e.  A  |  c  ~<_  b }
) )
9695rexbidv 2965 . . . . . . . 8  |-  ( d  =  (/)  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  E. b  e.  om  (/)  =  U. { c  e.  A  |  c  ~<_  b } ) )
9794, 96syl5ibrcom 222 . . . . . . 7  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
d  =  (/)  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }
) )
9875, 97syl5bi 217 . . . . . 6  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
d  e.  { (/) }  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b } ) )
9974, 98jaod 378 . . . . 5  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  (
( d  e.  A  \/  d  e.  { (/) } )  ->  E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }
) )
10029, 99impbid 191 . . . 4  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  ( d  e.  A  \/  d  e.  { (/) } ) ) )
101 elun 3631 . . . 4  |-  ( d  e.  ( A  u.  {
(/) } )  <->  ( d  e.  A  \/  d  e.  { (/) } ) )
102100, 101syl6bbr 263 . . 3  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ( E. b  e.  om  d  =  U. { c  e.  A  |  c  ~<_  b }  <->  d  e.  ( A  u.  { (/) } ) ) )
103102abbi1dv 2592 . 2  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  { d  |  E. b  e. 
om  d  =  U. { c  e.  A  |  c  ~<_  b } }  =  ( A  u.  { (/) } ) )
1042, 103syl5eq 2507 1  |-  ( ( [ C.]  Or  A  /\  A  C_ 
Fin )  ->  ran  ( b  e.  om  |->  U. { c  e.  A  |  c  ~<_  b }
)  =  ( A  u.  { (/) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823   {cab 2439    =/= wne 2649   A.wral 2804   E.wrex 2805   {crab 2808    u. cun 3459    C_ wss 3461   (/)c0 3783   {csn 4016   U.cuni 4235   class class class wbr 4439    |-> cmpt 4497    Or wor 4788   ran crn 4989   ` cfv 5570   [ C.] crpss 6552   omcom 6673    ~~ cen 7506    ~<_ cdom 7507   Fincfn 7509   cardccrd 8307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-rpss 6553  df-om 6674  df-1o 7122  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-card 8311
This theorem is referenced by:  fin1a2lem12  8782
  Copyright terms: Public domain W3C validator