MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2 Structured version   Unicode version

Theorem fin1a2 8687
Description: Every Ia-finite set is II-finite. Theorem 1 of [Levy58], p. 3. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2  |-  ( A  e. FinIa  ->  A  e. FinII )

Proof of Theorem fin1a2
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 elpwi 3969 . . . 4  |-  ( b  e.  ~P A  -> 
b  C_  A )
2 fin1ai 8565 . . . . 5  |-  ( ( A  e. FinIa  /\  b  C_  A )  ->  (
b  e.  Fin  \/  ( A  \  b
)  e.  Fin )
)
3 fin12 8685 . . . . . 6  |-  ( ( A  \  b )  e.  Fin  ->  ( A  \  b )  e. FinII )
43orim2i 518 . . . . 5  |-  ( ( b  e.  Fin  \/  ( A  \  b
)  e.  Fin )  ->  ( b  e.  Fin  \/  ( A  \  b
)  e. FinII ) )
52, 4syl 16 . . . 4  |-  ( ( A  e. FinIa  /\  b  C_  A )  ->  (
b  e.  Fin  \/  ( A  \  b
)  e. FinII ) )
61, 5sylan2 474 . . 3  |-  ( ( A  e. FinIa  /\  b  e.  ~P A )  ->  (
b  e.  Fin  \/  ( A  \  b
)  e. FinII ) )
76ralrimiva 2822 . 2  |-  ( A  e. FinIa  ->  A. b  e.  ~P  A ( b  e. 
Fin  \/  ( A  \  b )  e. FinII ) )
8 fin1a2s 8686 . 2  |-  ( ( A  e. FinIa  /\  A. b  e.  ~P  A ( b  e.  Fin  \/  ( A  \  b )  e. FinII ) )  ->  A  e. FinII )
97, 8mpdan 668 1  |-  ( A  e. FinIa  ->  A  e. FinII )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    e. wcel 1758   A.wral 2795    \ cdif 3425    C_ wss 3428   ~Pcpw 3960   Fincfn 7412  FinIacfin1a 8550  FinIIcfin2 8551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-rpss 6462  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-seqom 7005  df-1o 7022  df-2o 7023  df-oadd 7026  df-omul 7027  df-er 7203  df-map 7318  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-wdom 7877  df-card 8212  df-fin1a 8557  df-fin2 8558  df-fin4 8559  df-fin3 8560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator