MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin17 Structured version   Unicode version

Theorem fin17 8806
Description: Every I-finite set is VII-finite. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin17  |-  ( A  e.  Fin  ->  A  e. FinVII )

Proof of Theorem fin17
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 eldif 3424 . . . . 5  |-  ( b  e.  ( On  \  om )  <->  ( b  e.  On  /\  -.  b  e.  om ) )
2 enfi 7771 . . . . . . . . 9  |-  ( A 
~~  b  ->  ( A  e.  Fin  <->  b  e.  Fin ) )
3 onfin 7746 . . . . . . . . 9  |-  ( b  e.  On  ->  (
b  e.  Fin  <->  b  e.  om ) )
42, 3sylan9bbr 699 . . . . . . . 8  |-  ( ( b  e.  On  /\  A  ~~  b )  -> 
( A  e.  Fin  <->  b  e.  om ) )
54biimpd 207 . . . . . . 7  |-  ( ( b  e.  On  /\  A  ~~  b )  -> 
( A  e.  Fin  ->  b  e.  om )
)
65con3d 133 . . . . . 6  |-  ( ( b  e.  On  /\  A  ~~  b )  -> 
( -.  b  e. 
om  ->  -.  A  e.  Fin ) )
76impancom 438 . . . . 5  |-  ( ( b  e.  On  /\  -.  b  e.  om )  ->  ( A  ~~  b  ->  -.  A  e.  Fin ) )
81, 7sylbi 195 . . . 4  |-  ( b  e.  ( On  \  om )  ->  ( A 
~~  b  ->  -.  A  e.  Fin )
)
98rexlimiv 2890 . . 3  |-  ( E. b  e.  ( On 
\  om ) A 
~~  b  ->  -.  A  e.  Fin )
109con2i 120 . 2  |-  ( A  e.  Fin  ->  -.  E. b  e.  ( On 
\  om ) A 
~~  b )
11 isfin7 8713 . 2  |-  ( A  e.  Fin  ->  ( A  e. FinVII 
<->  -.  E. b  e.  ( On  \  om ) A  ~~  b ) )
1210, 11mpbird 232 1  |-  ( A  e.  Fin  ->  A  e. FinVII )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    e. wcel 1842   E.wrex 2755    \ cdif 3411   class class class wbr 4395   Oncon0 5410   omcom 6683    ~~ cen 7551   Fincfn 7554  FinVIIcfin7 8696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-om 6684  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fin7 8703
This theorem is referenced by:  fin67  8807  isfin7-2  8808
  Copyright terms: Public domain W3C validator