Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin Structured version   Visualization version   Unicode version

Theorem fin 5763
 Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fin

Proof of Theorem fin
StepHypRef Expression
1 ssin 3654 . . . 4
21anbi2i 700 . . 3
3 anandi 837 . . 3
42, 3bitr3i 255 . 2
5 df-f 5586 . 2
6 df-f 5586 . . 3
7 df-f 5586 . . 3
86, 7anbi12i 703 . 2
94, 5, 83bitr4i 281 1
 Colors of variables: wff setvar class Syntax hints:   wb 188   wa 371   cin 3403   wss 3404   crn 4835   wfn 5577  wf 5578 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-v 3047  df-in 3411  df-ss 3418  df-f 5586 This theorem is referenced by:  maprnin  28316
 Copyright terms: Public domain W3C validator