MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre3 Structured version   Unicode version

Theorem fimaxre3 10394
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre3  |-  ( ( A  e.  Fin  /\  A. y  e.  A  B  e.  RR )  ->  E. x  e.  RR  A. y  e.  A  B  <_  x
)
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem fimaxre3
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.29 2963 . . . . . 6  |-  ( ( A. y  e.  A  B  e.  RR  /\  E. y  e.  A  z  =  B )  ->  E. y  e.  A  ( B  e.  RR  /\  z  =  B ) )
2 eleq1 2526 . . . . . . . 8  |-  ( z  =  B  ->  (
z  e.  RR  <->  B  e.  RR ) )
32biimparc 487 . . . . . . 7  |-  ( ( B  e.  RR  /\  z  =  B )  ->  z  e.  RR )
43rexlimivw 2943 . . . . . 6  |-  ( E. y  e.  A  ( B  e.  RR  /\  z  =  B )  ->  z  e.  RR )
51, 4syl 16 . . . . 5  |-  ( ( A. y  e.  A  B  e.  RR  /\  E. y  e.  A  z  =  B )  ->  z  e.  RR )
65ex 434 . . . 4  |-  ( A. y  e.  A  B  e.  RR  ->  ( E. y  e.  A  z  =  B  ->  z  e.  RR ) )
76abssdv 3537 . . 3  |-  ( A. y  e.  A  B  e.  RR  ->  { z  |  E. y  e.  A  z  =  B }  C_  RR )
8 abrexfi 7725 . . 3  |-  ( A  e.  Fin  ->  { z  |  E. y  e.  A  z  =  B }  e.  Fin )
9 fimaxre2 10393 . . 3  |-  ( ( { z  |  E. y  e.  A  z  =  B }  C_  RR  /\ 
{ z  |  E. y  e.  A  z  =  B }  e.  Fin )  ->  E. x  e.  RR  A. w  e.  { z  |  E. y  e.  A  z  =  B } w  <_  x
)
107, 8, 9syl2anr 478 . 2  |-  ( ( A  e.  Fin  /\  A. y  e.  A  B  e.  RR )  ->  E. x  e.  RR  A. w  e. 
{ z  |  E. y  e.  A  z  =  B } w  <_  x )
11 r19.23v 2939 . . . . . . 7  |-  ( A. y  e.  A  (
w  =  B  ->  w  <_  x )  <->  ( E. y  e.  A  w  =  B  ->  w  <_  x ) )
1211albii 1611 . . . . . 6  |-  ( A. w A. y  e.  A  ( w  =  B  ->  w  <_  x )  <->  A. w ( E. y  e.  A  w  =  B  ->  w  <_  x
) )
13 ralcom4 3097 . . . . . 6  |-  ( A. y  e.  A  A. w ( w  =  B  ->  w  <_  x )  <->  A. w A. y  e.  A  ( w  =  B  ->  w  <_  x ) )
14 eqeq1 2458 . . . . . . . 8  |-  ( z  =  w  ->  (
z  =  B  <->  w  =  B ) )
1514rexbidv 2868 . . . . . . 7  |-  ( z  =  w  ->  ( E. y  e.  A  z  =  B  <->  E. y  e.  A  w  =  B ) )
1615ralab 3227 . . . . . 6  |-  ( A. w  e.  { z  |  E. y  e.  A  z  =  B }
w  <_  x  <->  A. w
( E. y  e.  A  w  =  B  ->  w  <_  x
) )
1712, 13, 163bitr4i 277 . . . . 5  |-  ( A. y  e.  A  A. w ( w  =  B  ->  w  <_  x )  <->  A. w  e.  {
z  |  E. y  e.  A  z  =  B } w  <_  x
)
18 nfv 1674 . . . . . . . 8  |-  F/ w  B  <_  x
19 breq1 4406 . . . . . . . 8  |-  ( w  =  B  ->  (
w  <_  x  <->  B  <_  x ) )
2018, 19ceqsalg 3103 . . . . . . 7  |-  ( B  e.  RR  ->  ( A. w ( w  =  B  ->  w  <_  x )  <->  B  <_  x ) )
2120ralimi 2819 . . . . . 6  |-  ( A. y  e.  A  B  e.  RR  ->  A. y  e.  A  ( A. w ( w  =  B  ->  w  <_  x )  <->  B  <_  x ) )
22 ralbi 2959 . . . . . 6  |-  ( A. y  e.  A  ( A. w ( w  =  B  ->  w  <_  x )  <->  B  <_  x )  ->  ( A. y  e.  A  A. w
( w  =  B  ->  w  <_  x
)  <->  A. y  e.  A  B  <_  x ) )
2321, 22syl 16 . . . . 5  |-  ( A. y  e.  A  B  e.  RR  ->  ( A. y  e.  A  A. w ( w  =  B  ->  w  <_  x )  <->  A. y  e.  A  B  <_  x ) )
2417, 23syl5bbr 259 . . . 4  |-  ( A. y  e.  A  B  e.  RR  ->  ( A. w  e.  { z  |  E. y  e.  A  z  =  B }
w  <_  x  <->  A. y  e.  A  B  <_  x ) )
2524rexbidv 2868 . . 3  |-  ( A. y  e.  A  B  e.  RR  ->  ( E. x  e.  RR  A. w  e.  { z  |  E. y  e.  A  z  =  B } w  <_  x 
<->  E. x  e.  RR  A. y  e.  A  B  <_  x ) )
2625adantl 466 . 2  |-  ( ( A  e.  Fin  /\  A. y  e.  A  B  e.  RR )  ->  ( E. x  e.  RR  A. w  e.  { z  |  E. y  e.  A  z  =  B } w  <_  x  <->  E. x  e.  RR  A. y  e.  A  B  <_  x ) )
2710, 26mpbid 210 1  |-  ( ( A  e.  Fin  /\  A. y  e.  A  B  e.  RR )  ->  E. x  e.  RR  A. y  e.  A  B  <_  x
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1368    = wceq 1370    e. wcel 1758   {cab 2439   A.wral 2799   E.wrex 2800    C_ wss 3439   class class class wbr 4403   Fincfn 7423   RRcr 9396    <_ cle 9534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-resscn 9454  ax-1cn 9455  ax-icn 9456  ax-addcl 9457  ax-addrcl 9458  ax-mulcl 9459  ax-mulrcl 9460  ax-i2m1 9465  ax-1ne0 9466  ax-rnegex 9468  ax-rrecex 9469  ax-cnre 9470  ax-pre-lttri 9471  ax-pre-lttrn 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-pnf 9535  df-mnf 9536  df-xr 9537  df-ltxr 9538  df-le 9539
This theorem is referenced by:  fsequb  11918  fsequb2  11919  caubnd  12968  limsupgre  13081  vdwnnlem3  14180  cnheibor  20669  bndth  20672  ovoliunlem2  21128  dchrisum  22884
  Copyright terms: Public domain W3C validator