MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre3 Structured version   Unicode version

Theorem fimaxre3 10502
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre3  |-  ( ( A  e.  Fin  /\  A. y  e.  A  B  e.  RR )  ->  E. x  e.  RR  A. y  e.  A  B  <_  x
)
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem fimaxre3
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.29 3002 . . . . . 6  |-  ( ( A. y  e.  A  B  e.  RR  /\  E. y  e.  A  z  =  B )  ->  E. y  e.  A  ( B  e.  RR  /\  z  =  B ) )
2 eleq1 2539 . . . . . . . 8  |-  ( z  =  B  ->  (
z  e.  RR  <->  B  e.  RR ) )
32biimparc 487 . . . . . . 7  |-  ( ( B  e.  RR  /\  z  =  B )  ->  z  e.  RR )
43rexlimivw 2956 . . . . . 6  |-  ( E. y  e.  A  ( B  e.  RR  /\  z  =  B )  ->  z  e.  RR )
51, 4syl 16 . . . . 5  |-  ( ( A. y  e.  A  B  e.  RR  /\  E. y  e.  A  z  =  B )  ->  z  e.  RR )
65ex 434 . . . 4  |-  ( A. y  e.  A  B  e.  RR  ->  ( E. y  e.  A  z  =  B  ->  z  e.  RR ) )
76abssdv 3579 . . 3  |-  ( A. y  e.  A  B  e.  RR  ->  { z  |  E. y  e.  A  z  =  B }  C_  RR )
8 abrexfi 7830 . . 3  |-  ( A  e.  Fin  ->  { z  |  E. y  e.  A  z  =  B }  e.  Fin )
9 fimaxre2 10501 . . 3  |-  ( ( { z  |  E. y  e.  A  z  =  B }  C_  RR  /\ 
{ z  |  E. y  e.  A  z  =  B }  e.  Fin )  ->  E. x  e.  RR  A. w  e.  { z  |  E. y  e.  A  z  =  B } w  <_  x
)
107, 8, 9syl2anr 478 . 2  |-  ( ( A  e.  Fin  /\  A. y  e.  A  B  e.  RR )  ->  E. x  e.  RR  A. w  e. 
{ z  |  E. y  e.  A  z  =  B } w  <_  x )
11 r19.23v 2947 . . . . . . 7  |-  ( A. y  e.  A  (
w  =  B  ->  w  <_  x )  <->  ( E. y  e.  A  w  =  B  ->  w  <_  x ) )
1211albii 1620 . . . . . 6  |-  ( A. w A. y  e.  A  ( w  =  B  ->  w  <_  x )  <->  A. w ( E. y  e.  A  w  =  B  ->  w  <_  x
) )
13 ralcom4 3137 . . . . . 6  |-  ( A. y  e.  A  A. w ( w  =  B  ->  w  <_  x )  <->  A. w A. y  e.  A  ( w  =  B  ->  w  <_  x ) )
14 eqeq1 2471 . . . . . . . 8  |-  ( z  =  w  ->  (
z  =  B  <->  w  =  B ) )
1514rexbidv 2978 . . . . . . 7  |-  ( z  =  w  ->  ( E. y  e.  A  z  =  B  <->  E. y  e.  A  w  =  B ) )
1615ralab 3269 . . . . . 6  |-  ( A. w  e.  { z  |  E. y  e.  A  z  =  B }
w  <_  x  <->  A. w
( E. y  e.  A  w  =  B  ->  w  <_  x
) )
1712, 13, 163bitr4i 277 . . . . 5  |-  ( A. y  e.  A  A. w ( w  =  B  ->  w  <_  x )  <->  A. w  e.  {
z  |  E. y  e.  A  z  =  B } w  <_  x
)
18 nfv 1683 . . . . . . . 8  |-  F/ w  B  <_  x
19 breq1 4455 . . . . . . . 8  |-  ( w  =  B  ->  (
w  <_  x  <->  B  <_  x ) )
2018, 19ceqsalg 3143 . . . . . . 7  |-  ( B  e.  RR  ->  ( A. w ( w  =  B  ->  w  <_  x )  <->  B  <_  x ) )
2120ralimi 2860 . . . . . 6  |-  ( A. y  e.  A  B  e.  RR  ->  A. y  e.  A  ( A. w ( w  =  B  ->  w  <_  x )  <->  B  <_  x ) )
22 ralbi 2998 . . . . . 6  |-  ( A. y  e.  A  ( A. w ( w  =  B  ->  w  <_  x )  <->  B  <_  x )  ->  ( A. y  e.  A  A. w
( w  =  B  ->  w  <_  x
)  <->  A. y  e.  A  B  <_  x ) )
2321, 22syl 16 . . . . 5  |-  ( A. y  e.  A  B  e.  RR  ->  ( A. y  e.  A  A. w ( w  =  B  ->  w  <_  x )  <->  A. y  e.  A  B  <_  x ) )
2417, 23syl5bbr 259 . . . 4  |-  ( A. y  e.  A  B  e.  RR  ->  ( A. w  e.  { z  |  E. y  e.  A  z  =  B }
w  <_  x  <->  A. y  e.  A  B  <_  x ) )
2524rexbidv 2978 . . 3  |-  ( A. y  e.  A  B  e.  RR  ->  ( E. x  e.  RR  A. w  e.  { z  |  E. y  e.  A  z  =  B } w  <_  x 
<->  E. x  e.  RR  A. y  e.  A  B  <_  x ) )
2625adantl 466 . 2  |-  ( ( A  e.  Fin  /\  A. y  e.  A  B  e.  RR )  ->  ( E. x  e.  RR  A. w  e.  { z  |  E. y  e.  A  z  =  B } w  <_  x  <->  E. x  e.  RR  A. y  e.  A  B  <_  x ) )
2710, 26mpbid 210 1  |-  ( ( A  e.  Fin  /\  A. y  e.  A  B  e.  RR )  ->  E. x  e.  RR  A. y  e.  A  B  <_  x
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2817   E.wrex 2818    C_ wss 3481   class class class wbr 4452   Fincfn 7526   RRcr 9501    <_ cle 9639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-i2m1 9570  ax-1ne0 9571  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-1o 7140  df-oadd 7144  df-er 7321  df-en 7527  df-dom 7528  df-sdom 7529  df-fin 7530  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644
This theorem is referenced by:  fsequb  12063  fsequb2  12064  caubnd  13166  limsupgre  13279  vdwnnlem3  14386  cnheibor  21300  bndth  21303  ovoliunlem2  21759  dchrisum  23520  ssfiunibd  31377  fourierdlem70  31768  fourierdlem71  31769  fourierdlem80  31778
  Copyright terms: Public domain W3C validator